1
|
McCormick SD, Taylor ML, Regish AM. Cortisol is an osmoregulatory and glucose-regulating hormone in Atlantic sturgeon, a basal ray-finned fish. ACTA ACUST UNITED AC 2020; 223:223/18/jeb220251. [PMID: 32938687 DOI: 10.1242/jeb.220251] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 07/19/2020] [Indexed: 12/31/2022]
Abstract
Our current understanding of the hormonal control of ion regulation in aquatic vertebrates comes primarily from studies on teleost fishes, with relatively little information on more basal fishes. We investigated the role of cortisol in regulating seawater tolerance and its underlying mechanisms in an anadromous chondrostean, the Atlantic sturgeon (Acipenser oxyrinchus). Exposure of freshwater-reared Atlantic sturgeon to seawater (25 ppt) resulted in transient (1-3 day) increases in plasma chloride, cortisol and glucose levels and long-term (6-14 day) increases in the abundance of gill Na+/K+/2Cl- cotransporter (NKCC), which plays a critical role in salt secretion in teleosts. The abundance of gill V-type H+-ATPase, which is thought to play a role in ion uptake in fishes, decreased after exposure to seawater. Gill Na+/K+-ATPase activity did not increase in 25 ppt seawater, but did increase in fish gradually acclimated to 30 ppt. Treatment of Atlantic sturgeon in freshwater with exogenous cortisol resulted in dose-dependent increases in cortisol, glucose and gill NKCC and H+-ATPase abundance. Our results indicate that cortisol has an important role in regulating mechanisms for ion secretion and uptake in sturgeon and provide support for the hypothesis that control of osmoregulation and glucose by corticosteroids is a basal trait of jawed vertebrates.
Collapse
Affiliation(s)
- Stephen D McCormick
- U.S. Geological Survey, Leetown Science Center, S.O. Conte Anadromous Fish Research Laboratory, Turners Falls, MA 01376, USA
| | - Meghan L Taylor
- U.S. Geological Survey, Leetown Science Center, S.O. Conte Anadromous Fish Research Laboratory, Turners Falls, MA 01376, USA
| | - Amy M Regish
- U.S. Geological Survey, Leetown Science Center, S.O. Conte Anadromous Fish Research Laboratory, Turners Falls, MA 01376, USA
| |
Collapse
|
2
|
Wichmann L, Althaus M. Evolution of epithelial sodium channels: current concepts and hypotheses. Am J Physiol Regul Integr Comp Physiol 2020; 319:R387-R400. [PMID: 32783689 DOI: 10.1152/ajpregu.00144.2020] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The conquest of freshwater and terrestrial habitats was a key event during vertebrate evolution. Occupation of low-salinity and dry environments required significant osmoregulatory adaptations enabling stable ion and water homeostasis. Sodium is one of the most important ions within the extracellular liquid of vertebrates, and molecular machinery for urinary reabsorption of this electrolyte is critical for the maintenance of body osmoregulation. Key ion channels involved in the fine-tuning of sodium homeostasis in tetrapod vertebrates are epithelial sodium channels (ENaCs), which allow the selective influx of sodium ions across the apical membrane of epithelial cells lining the distal nephron or the colon. Furthermore, ENaC-mediated sodium absorption across tetrapod lung epithelia is crucial for the control of liquid volumes lining the pulmonary surfaces. ENaCs are vertebrate-specific members of the degenerin/ENaC family of cation channels; however, there is limited knowledge on the evolution of ENaC within this ion channel family. This review outlines current concepts and hypotheses on ENaC phylogeny and discusses the emergence of regulation-defining sequence motifs in the context of osmoregulatory adaptations during tetrapod terrestrialization. In light of the distinct regulation and expression of ENaC isoforms in tetrapod vertebrates, we discuss the potential significance of ENaC orthologs in osmoregulation of fishes as well as the putative fates of atypical channel isoforms in mammals. We hypothesize that ancestral proton-sensitive ENaC orthologs might have aided the osmoregulatory adaptation to freshwater environments whereas channel regulation by proteases evolved as a molecular adaptation to lung liquid homeostasis in terrestrial tetrapods.
Collapse
Affiliation(s)
- Lukas Wichmann
- Institute for Animal Physiology, Justus Liebig University, Giessen, Germany
| | - Mike Althaus
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, Rheinbach, Germany
| |
Collapse
|
3
|
Hormonal regulation of thirst in the amphibious ray-finned fish suggests the requirement for terrestrialization during evolution. Sci Rep 2019; 9:16347. [PMID: 31705012 PMCID: PMC6841719 DOI: 10.1038/s41598-019-52870-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 10/07/2019] [Indexed: 11/27/2022] Open
Abstract
Thirst has evolved for vertebrate terrestrial adaptation. We previously showed that buccal drying induced a series of drinking behaviours (migration to water–taking water into the mouth–swallowing) in the amphibious mudskipper goby, thereby discovering thirst in ray-finned fish. However, roles of dipsogenic/antidipsogenic hormones, which act on the thirst center in terrestrial tetrapods, have remained unclear in the mudskipper thirst. Here we examined the hormonal effects on the mudskipper drinking behaviours, particularly the antagonistic interaction between angiotensin II (AngII) and atrial natriuretic peptide (ANP) which is important for thirst regulation in mammalian ‘forebrain’. Expectedly, intracerebroventricular injection of ANP in mudskippers reduced AngII-increased drinking rate. ANP also suppressed the neural activity at the ‘hindbrain’ region for the swallowing reflex, and the maintenance of buccopharyngeal water due to the swallowing inhibition may attenuate the motivation to move to water. Thus, the hormonal molecules involved in drinking regulation, as well as the influence of buccopharyngeal water, appear to be conserved in distantly related species to solve osmoregulatory problems, whereas hormonal control of thirst at the forebrain might have been acquired only in tetrapod lineage during evolution.
Collapse
|
4
|
Giacomin M, Eom J, Schulte PM, Wood CM. Acute temperature effects on metabolic rate, ventilation, diffusive water exchange, osmoregulation, and acid–base status in the Pacific hagfish (Eptatretus stoutii). J Comp Physiol B 2018; 189:17-35. [DOI: 10.1007/s00360-018-1191-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 10/30/2018] [Accepted: 11/05/2018] [Indexed: 12/21/2022]
|
5
|
Zhao F, Wu B, Yang G, Zhang T, Zhuang P. Adaptive alterations on gill Na⁺, K⁺-ATPase activity and mitochondrion-rich cells of juvenile Acipenser sinensis acclimated to brackish water. FISH PHYSIOLOGY AND BIOCHEMISTRY 2016; 42:749-756. [PMID: 26614501 DOI: 10.1007/s10695-015-0172-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 11/24/2015] [Indexed: 06/05/2023]
Abstract
Understanding the physiological changes and osmoregulatory strategy is critical for anadromous species to adapt to large changes between freshwater and marine environments. In this study, juvenile Chinese sturgeon (Acipenser sinensis) were acclimated for 2 months to freshwater (FW, c. 0‰) and brackish water (BW, 15‰). Blood was assessed for changes in osmolality and ions. Gill tissue was assayed for Na(+), K(+)-ATPase (NKA) activity and immunohistochemical analysis on mitochondria-rich cells (MRCs). Serum osmolality and ions concentrations (Na(+), Cl(-) and K(+)) examined, except K(+), increased significantly in those specimens adapted to BW. However, the variations were within the range of effective hyperosmotic adaptation. The specific activity of gill NKA of juveniles adapted to BW was significantly higher (c. 1.6 times) than that of fish adapted to FW. MRCs were mainly presented in the interlamellar region of the filament and at the base of the lamella in either FW- or BW-acclimated individuals. In BW, the number and size of MRCs on filaments greatly increased. However, there was no significant difference in the number and size of the MRCs at the lamella region. Results show that juvenile Chinese sturgeon keep osmotic homeostasis in hyperosmotic environments by increasing gill NKA activity and MRCs' size and number, which is similar to other sturgeons and euryhaline teleosts.
Collapse
Affiliation(s)
- Feng Zhao
- Key Laboratory of Fisheries Ecology of the Yangtze Estuary, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China.
| | - Beibei Wu
- Key Laboratory of Fisheries Ecology of the Yangtze Estuary, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China
| | - Gang Yang
- Key Laboratory of Fisheries Ecology of the Yangtze Estuary, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China
| | - Tao Zhang
- Key Laboratory of Fisheries Ecology of the Yangtze Estuary, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China
| | - Ping Zhuang
- Key Laboratory of Fisheries Ecology of the Yangtze Estuary, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China.
| |
Collapse
|
6
|
Hagfish: Champions of CO2 tolerance question the origins of vertebrate gill function. Sci Rep 2015; 5:11182. [PMID: 26057989 PMCID: PMC4460890 DOI: 10.1038/srep11182] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 04/07/2015] [Indexed: 11/30/2022] Open
Abstract
The gill is widely accepted to have played a key role in the adaptive radiation of early vertebrates by supplanting the skin as the dominant site of gas exchange. However, in the most basal extant craniates, the hagfishes, gills play only a minor role in gas exchange. In contrast, we found hagfish gills to be associated with a tremendous capacity for acid-base regulation. Indeed, Pacific hagfish exposed acutely to severe sustained hypercarbia tolerated among the most severe blood acidoses ever reported (1.2 pH unit reduction) and subsequently exhibited the greatest degree of acid-base compensation ever observed in an aquatic chordate. This was accomplished through an unprecedented increase in plasma [HCO3−] (>75 mM) in exchange for [Cl−]. We thus propose that the first physiological function of the ancestral gill was acid-base regulation, and that the gill was later co-opted for its central role in gas exchange in more derived aquatic vertebrates.
Collapse
|
7
|
LeMoine CMR, Walsh PJ. Evolution of urea transporters in vertebrates: adaptation to urea's multiple roles and metabolic sources. J Exp Biol 2015; 218:1936-45. [PMID: 26085670 DOI: 10.1242/jeb.114223] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In the two decades since the first cloning of the mammalian kidney urea transporter (UT-A), UT genes have been identified in a plethora of organisms, ranging from single-celled bacteria to metazoans. In this review, focusing mainly on vertebrates, we first reiterate the multiple catabolic and anabolic pathways that produce urea, then we reconstruct the phylogenetic history of UTs, and finally we examine the tissue distribution of UTs in selected vertebrate species. Our analysis reveals that from an ancestral UT, three homologues evolved in piscine lineages (UT-A, UT-C and UT-D), followed by a subsequent reduction to a single UT-A in lobe-finned fish and amphibians. A later internal tandem duplication of UT-A occurred in the amniote lineage (UT-A1), followed by a second tandem duplication in mammals to give rise to UT-B. While the expected UT expression is evident in excretory and osmoregulatory tissues in ureotelic taxa, UTs are also expressed ubiquitously in non-ureotelic taxa, and in tissues without a complete ornithine-urea cycle (OUC). We posit that non-OUC production of urea from arginine by arginase, an important pathway to generate ornithine for synthesis of molecules such as polyamines for highly proliferative tissues (e.g. testis, embryos), and neurotransmitters such as glutamate for neural tissues, is an important evolutionary driving force for the expression of UTs in these taxa and tissues.
Collapse
Affiliation(s)
- Christophe M R LeMoine
- Department of Biology, Centre for Advanced Research in Environmental Genomics, University of Ottawa, 30 Marie Curie, Ottawa, ON, Canada, K1N 6N5
| | - Patrick J Walsh
- Department of Biology, Centre for Advanced Research in Environmental Genomics, University of Ottawa, 30 Marie Curie, Ottawa, ON, Canada, K1N 6N5
| |
Collapse
|
8
|
Effects of salinity on growth and ion regulation of juvenile alligator gar Atractosteus spatula. Comp Biochem Physiol A Mol Integr Physiol 2013; 169:44-50. [PMID: 24368134 DOI: 10.1016/j.cbpa.2013.12.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 12/06/2013] [Accepted: 12/12/2013] [Indexed: 11/23/2022]
Abstract
The alligator gar (Atractosteus spatula) is a primitive euryhaline fish, found primarily in estuaries and freshwater drainages associated with the northern Gulf of Mexico. The extent of its hypo-osmotic regulatory abilities is not well understood. In order to determine how salinity affects growth rates and ionic and osmoregulation, juvenile alligator gar (330 days after hatch; 185 g) were exposed to 4 different salinities (0, 8, 16, and 24 ppt) for a 30-day period. Specific growth rate, plasma osmolality and ion concentrations, gill and gastrointestinal tract Na(+), K(+)-ATPase activities, and drinking rate were compared. Juvenile alligator gar were able to tolerate hyperosmotic salinities up to 24 ppt for a 30 day period, albeit with decreased growth resulting largely from decreased food consumption. Plasma osmolality and ionic concentrations were elevated in hyperosmotic salinities, and drinking rates and gastrointestinal tract Na(+), K(+)-ATPase activities increased, particularly in the pyloric caeca, presumably the primary location of water absorption. Therefore, juvenile alligator gar<1 year of age are capable of prolonged exposure to hyperosmotic salinities, but, based on the inference of these data, require access to lower salinities for long-term survival.
Collapse
|
9
|
Allen PJ, Weihrauch D, Grandmaison V, Dasiewicz P, Peake SJ, Anderson WG. The influence of environmental calcium concentrations on calcium flux, compensatory drinking and epithelial calcium channel expression in a freshwater cartilaginous fish. ACTA ACUST UNITED AC 2011; 214:996-1006. [PMID: 21346128 DOI: 10.1242/jeb.041087] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Calcium metabolism and mRNA levels of the epithelial calcium channel (ECaC) were examined in a freshwater cartilaginous fish, the lake sturgeon Acipenser fulvescens. Lake sturgeon were acclimated for ≥2 weeks to 0.1 (low), 0.4 (normal) or 3.3 (high) mmol l(-1) environmental calcium. Whole-body calcium flux was examined using (45)Ca as a radioactive marker. Net calcium flux was inward in all treatment groups; however, calcium influx was greatest in the low calcium environment and lowest in the high calcium environment, whereas efflux had the opposite relationship. A significant difference in the concentration of (45)Ca in the gastrointestinal tract (GIT) of fish in the low calcium environment led to the examination of drinking rate and calcium flux across the anterior-middle (mid) intestine. Drinking rate was not different between treatments; however, calcium influx across the mid-intestine in the low calcium treatment was significantly greater than that in both the normal and high calcium treatments. The lake sturgeon ECaC was 2831 bp in length, with a predicted protein sequence of 683 amino acids that shared a 66% identity with the closest sequenced ECaCs from the vertebrate phyla. ECaC mRNA levels were examined in the gills, kidney, pyloric caeca, mid-intestine and spiral intestine. Expression levels were highest in the gills, then the kidneys, and were orders of magnitude lower in the GIT. Contrary to existing models for calcium uptake in the teleost gill, ECaC expression was greatest in high calcium conditions and kidney ECaC expression was lowest in low calcium conditions, suggesting that cellular transport mechanisms for calcium may be distinctly different in these freshwater cartilaginous fishes.
Collapse
Affiliation(s)
- Peter J Allen
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada.
| | | | | | | | | | | |
Collapse
|
10
|
|
11
|
Calcium regulation in wild populations of a freshwater cartilaginous fish, the lake sturgeon Acipenser fulvescens. Comp Biochem Physiol A Mol Integr Physiol 2009; 154:437-50. [DOI: 10.1016/j.cbpa.2009.07.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Revised: 07/09/2009] [Accepted: 07/10/2009] [Indexed: 11/21/2022]
|
12
|
Allen PJ, Cech JJ, Kültz D. Mechanisms of seawater acclimation in a primitive, anadromous fish, the green sturgeon. J Comp Physiol B 2009; 179:903-20. [PMID: 19517116 PMCID: PMC2745624 DOI: 10.1007/s00360-009-0372-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Revised: 05/21/2009] [Accepted: 05/22/2009] [Indexed: 11/25/2022]
Abstract
Relatively little is known about salinity acclimation in the primitive groups of fishes. To test whether physiological preparative changes occur and to investigate the mechanisms of salinity acclimation, anadromous green sturgeon, Acipenser medirostris (Chondrostei) of three different ages (100, 170, and 533 dph) were acclimated for 7 weeks to three different salinities (<3, 10, and 33 ppt). Gill, kidney, pyloric caeca, and spiral intestine tissues were assayed for Na(+), K(+)-ATPase activity; and gills were analyzed for mitochondria-rich cell (MRC) size, abundance, localization and Na(+), K(+)-ATPase content. Kidneys were analyzed for Na(+), K(+)-ATPase localization and the gastro-intestinal tract (GIT) was assessed for changes in ion and base content. Na(+), K(+)-ATPase activities increased in the gills and decreased in the kidneys with increasing salinity. Gill MRCs increased in size and decreased in relative abundance with fish size/age. Gill MRC Na(+), K(+)-ATPase content (e.g., ion-pumping capacity) was proportional to MRC size, indicating greater abilities to regulate ions with size/age. Developmental/ontogenetic changes were seen in the rapid increases in gill MRC size and lamellar length between 100 and 170 dph. Na(+), K(+)-ATPase activities increased fourfold in the pyloric caeca in 33 ppt, presumably due to increased salt and water absorption as indicated by GIT fluids, solids, and ion concentrations. In contrast to teleosts, a greater proportion of base (HCO(3) (-) and 2CO(3) (2-)) was found in intestinal precipitates than fluids. Green sturgeon osmo- and ionoregulate with similar mechanisms to more-derived teleosts, indicating the importance of these mechanisms during the evolution of fishes, although salinity acclimation may be more dependent on body size.
Collapse
Affiliation(s)
- Peter J Allen
- Department of Wildlife, Fish, and Conservation Biology, University of California, 1 Shields Avenue, Davis, CA, 95616, USA.
| | | | | |
Collapse
|