1
|
Culbert BM, Mossington E, McCormick SD, Bernier NJ. Regulation and function of the gill corticotropin-releasing factor system during osmoregulatory disturbances in Atlantic salmon. J Exp Biol 2025; 228:JEB248168. [PMID: 39690939 PMCID: PMC11832130 DOI: 10.1242/jeb.248168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 12/10/2024] [Indexed: 12/19/2024]
Abstract
While corticosteroids, including cortisol, have conserved osmoregulatory functions, the relative involvement of other stress-related hormones in osmoregulatory processes remains unclear. To address this gap, we initially characterized the gill corticotropin-releasing factor (CRF) system of Atlantic salmon (Salmo salar) and then determined: (1) how it is influenced by osmotic disturbances; (2) whether it is affected by cortisol; and (3) which physiological processes it regulates in the gills. Most CRF system components were expressed in the gills, with CRF receptor 2 (crfr2a), CRF binding protein (crfbp1 and crfbp2) and urocortin 2 (ucn2a) being the most abundant. The development of seawater tolerance in migratory juveniles (i.e. smolts) was associated with a general transcriptional upregulation of CRF ligands, but transcript levels of crfr2a, crfbp2, crfb2 and ucn2a decreased by ∼50% following seawater transfer. Accordingly, transfer of seawater-acclimated fish into freshwater increased crfr2a and ucn2a levels. Cortisol treatment of cultured gill filaments had marked effects on the CRF system; however, these effects failed to fully replicate changes observed during in vivo experiments, suggesting direct contributions of the gill CRF system during osmotic disturbances. Indeed, activation of the CRF system in cultured filaments from freshwater-acclimated (but not seawater-acclimated) salmon had transcriptional effects on several physiological systems (e.g. endothelial permeability, angiogenesis and immune regulation) which involved contributions by both CRF receptor subtypes. Overall, our results indicate that the gill CRF system is more active in hypoosmotic environments and directly contributes to the coordination of physiological responses following osmotic disturbances.
Collapse
Affiliation(s)
- Brett M. Culbert
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, ON, Canada, N1G 2W1
| | - Emma Mossington
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, ON, Canada, N1G 2W1
| | - Stephen D. McCormick
- US Geological Survey, Eastern Ecological Science Center, S.O. Conte Anadromous Fish Research Laboratory, Turners Falls, MA 01376, USA
- Department of Biology, University of Massachusetts, Amherst, Amherst, MA 01003, USA
| | - Nicholas J. Bernier
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, ON, Canada, N1G 2W1
| |
Collapse
|
2
|
Jing X, Lyu L, Gong Y, Wen H, Li Y, Wang X, Li J, Yao Y, Zuo C, Xie S, Yan S, Qi X. Olfactory receptor OR52N2 for PGE 2 in mediation of guppy courtship behaviors. Int J Biol Macromol 2023; 241:124518. [PMID: 37088189 DOI: 10.1016/j.ijbiomac.2023.124518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 01/19/2023] [Accepted: 04/15/2023] [Indexed: 04/25/2023]
Abstract
Prostaglandins (PGs) are a type of physiologically active unsaturated fatty acids. As an important sex pheromone, PGs play a vital role in regulating the reproductive behaviors of species by mediating nerve and endocrine responses. In this study, guppy (Poecilia reticulate) was used as the model specie to detect the function of PGE2 in inducing the onset of courtship behaviors. Our results showed that adding PGE2 into the water environment could activate the courtship behavior of male guppy, indicating that the peripheral olfactory system mediated the PGE2 function. Thereafter, the open reading frame (ORF) of olfactory receptor or52n2 was cloned, which was 936 bp in length, coding 311 amino acids. As a typical G protein-coupled receptor, OR52N2 had a conservative seven α-helix transmembrane domains. To confirm the regulatory relationship between OR52N2 and PGE2, dual-luciferase reporter assay was employed to verify the activation of downstream CREB signaling pathways. Results showed that PGE2 significantly enhanced CRE promoter activity in or52n2 ORF transient transfected HEK-293 T cells. Finally, localization of or52n2 mRNA were observed in ciliated receptor cells of the olfactory epithelium using in situ hybridization. Our results provide a novel insight into sex pheromone signaling transduction in reproductive behavior.
Collapse
Affiliation(s)
- Xiao Jing
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Likang Lyu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Yu Gong
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Haishen Wen
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Yun Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Xiaojie Wang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Jianshuang Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Yijia Yao
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Chenpeng Zuo
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Songyang Xie
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Shaojing Yan
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Xin Qi
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China.
| |
Collapse
|
3
|
Mohindra V, Chowdhury LM, Chauhan N, Paul A, Singh RK, Kushwaha B, Maurya RK, Lal KK, Jena JK. Transcriptome Analysis Revealed Osmoregulation Related Regulatory Networks and Hub Genes in the Gills of Hilsa shad, Tenualosa ilisha, during the Migratory Osmotic Stress. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023; 25:161-173. [PMID: 36631626 DOI: 10.1007/s10126-022-10190-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Tenualosa ilisha (Hilsa shad), an anadromous fish, usually inhabits coastal and estuarine waters, and migrates to freshwater for spawning. In this study, large-scale gill transcriptome analyses from three salinity regions, i.e., fresh, brackish and marine water, revealed 3277 differentially expressed genes (DEGs), out of which 232 were found to be common between marine vs freshwater and brackish vs freshwater. These genes were mapped into 54 KEGG Pathways, and the most significant of these were focal adhesion, adherens junction, tight junction, and PI3K-Akt signaling pathways. A total of 24 osmoregulatory genes were found to be differentially expressed in different habitats. The gene members of slc16 and slc2 families showed a dissimilar pattern of expressions, while two claudin genes (cldn11 & cldn10), transmembrane tm56b, and voltage-gated potassium channel gene kcna10 were downregulated in freshwater samples, as compared to that of brackish and marine environment. Protein-protein interaction (PPI) network analysis of 232 DEGs showed 101 genes to be involved in PPI, while fn1 gene was found to be interacting with the highest number of genes (36). Twenty-five hub genes belonged to 12 functional groups, with muscle structure development with seven genes, forming the major group. These results provided valuable information about the genes, potentially involved in the molecular mechanisms regulating water homeostasis in gills, during migration for spawning and low-salinity adaptation in Hilsa shad. These genes may form the basis for the bio-marker development for adaptation to the stress levied by major environmental changes, due to hatchery/culture conditions.
Collapse
Affiliation(s)
- Vindhya Mohindra
- ICAR-National Bureau of Fish Genetic Resources (NBFGR), Canal Ring Road, Dilkusha, Lucknow, 226002, India.
| | - Labrechai Mog Chowdhury
- ICAR-National Bureau of Fish Genetic Resources (NBFGR), Canal Ring Road, Dilkusha, Lucknow, 226002, India
| | - Nishita Chauhan
- ICAR-National Bureau of Fish Genetic Resources (NBFGR), Canal Ring Road, Dilkusha, Lucknow, 226002, India
| | - Alisha Paul
- ICAR-National Bureau of Fish Genetic Resources (NBFGR), Canal Ring Road, Dilkusha, Lucknow, 226002, India
| | - Rajeev Kumar Singh
- ICAR-National Bureau of Fish Genetic Resources (NBFGR), Canal Ring Road, Dilkusha, Lucknow, 226002, India
| | - Basdeo Kushwaha
- ICAR-National Bureau of Fish Genetic Resources (NBFGR), Canal Ring Road, Dilkusha, Lucknow, 226002, India
| | - Rajesh Kumar Maurya
- ICAR-National Bureau of Fish Genetic Resources (NBFGR), Canal Ring Road, Dilkusha, Lucknow, 226002, India
| | - Kuldeep K Lal
- ICAR-National Bureau of Fish Genetic Resources (NBFGR), Canal Ring Road, Dilkusha, Lucknow, 226002, India
| | - J K Jena
- Indian Council of Agricultural Research (ICAR), Krishi Anusandhan Bhawan-II, New Delhi, 110 012, India
| |
Collapse
|
4
|
Takvam M, Wood CM, Kryvi H, Nilsen TO. Ion Transporters and Osmoregulation in the Kidney of Teleost Fishes as a Function of Salinity. Front Physiol 2021; 12:664588. [PMID: 33967835 PMCID: PMC8098666 DOI: 10.3389/fphys.2021.664588] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/24/2021] [Indexed: 12/13/2022] Open
Abstract
Euryhaline teleosts exhibit major changes in renal function as they move between freshwater (FW) and seawater (SW) environments, thus tolerating large fluctuations in salinity. In FW, the kidney excretes large volumes of water through high glomerular filtration rates (GFR) and low tubular reabsorption rates, while actively reabsorbing most ions at high rates. The excreted product has a high urine flow rate (UFR) with a dilute composition. In SW, GFR is greatly reduced, and the tubules reabsorb as much water as possible, while actively secreting divalent ions. The excreted product has a low UFR, and is almost isosmotic to the blood plasma, with Mg2+, SO42–, and Cl– as the major ionic components. Early studies at the organismal level have described these basic patterns, while in the last two decades, studies of regulation at the cell and molecular level have been implemented, though only in a few euryhaline groups (salmonids, eels, tilapias, and fugus). There have been few studies combining the two approaches. The aim of the review is to integrate known aspects of renal physiology (reabsorption and secretion) with more recent advances in molecular water and solute physiology (gene and protein function of transporters). The renal transporters addressed include the subunits of the Na+, K+- ATPase (NKA) enzyme, monovalent ion transporters for Na+, Cl–, and K+ (NKCC1, NKCC2, CLC-K, NCC, ROMK2), water transport pathways [aquaporins (AQP), claudins (CLDN)], and divalent ion transporters for SO42–, Mg2+, and Ca2+ (SLC26A6, SLC26A1, SLC13A1, SLC41A1, CNNM2, CNNM3, NCX1, NCX2, PMCA). For each transport category, we address the current understanding at the molecular level, try to synthesize it with classical knowledge of overall renal function, and highlight knowledge gaps. Future research on the kidney of euryhaline fishes should focus on integrating changes in kidney reabsorption and secretion of ions with changes in transporter function at the cellular and molecular level (gene and protein verification) in different regions of the nephrons. An increased focus on the kidney individually and its functional integration with the other osmoregulatory organs (gills, skin and intestine) in maintaining overall homeostasis will have applied relevance for aquaculture.
Collapse
Affiliation(s)
- Marius Takvam
- Department of Biological Sciences, University of Bergen, Bergen, Norway.,NORCE, Norwegian Research Centre, NORCE Environment, Bergen, Norway
| | - Chris M Wood
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Harald Kryvi
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Tom O Nilsen
- Department of Biological Sciences, University of Bergen, Bergen, Norway.,NORCE, Norwegian Research Centre, NORCE Environment, Bergen, Norway
| |
Collapse
|
5
|
Huang PC, Liu TY, Hu MY, Casties I, Tseng YC. Energy and nitrogenous waste from glutamate/glutamine catabolism facilitates acute osmotic adjustment in non-neuroectodermal branchial cells. Sci Rep 2020; 10:9460. [PMID: 32528019 PMCID: PMC7289822 DOI: 10.1038/s41598-020-65913-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 05/12/2020] [Indexed: 11/30/2022] Open
Abstract
Maintenance of homeostasis is one of the most important physiological responses for animals upon osmotic perturbations. Ionocytes of branchial epithelia are the major cell types responsible for active ion transport, which is mediated by energy-consuming ion pumps (e.g., Na+-K+-ATPase, NKA) and secondary active transporters. Consequently, in addition to osmolyte adjustments, sufficient and immediate energy replenishment is essenttableial for acclimation to osmotic changes. In this study, we propose that glutamate/glutamine catabolism and trans-epithelial transport of nitrogenous waste may aid euryhaline teleosts Japanese medaka (Oryzias latipes) during acclimation to osmotic changes. Glutamate family amino acid contents in gills were increased by hyperosmotic challenge along an acclimation period of 72 hours. This change in amino acids was accompanied by a stimulation of putative glutamate/glutamine transporters (Eaats, Sat) and synthesis enzymes (Gls, Glul) that participate in regulating glutamate/glutamine cycling in branchial epithelia during acclimation to hyperosmotic conditions. In situ hybridization of glutaminase and glutamine synthetase in combination with immunocytochemistry demonstrate a partial colocalization of olgls1a and olgls2 but not olglul with Na+/K+-ATPase-rich ionocytes. Also for the glutamate and glutamine transporters colocalization with ionocytes was found for oleaat1, oleaat3, and olslc38a4, but not oleaat2. Morpholino knock-down of Sat decreased Na+ flux from the larval epithelium, demonstrating the importance of glutamate/glutamine transport in osmotic regulation. In addition to its role as an energy substrate, glutamate deamination produces NH4+, which may contribute to osmolyte production; genes encoding components of the urea production cycle, including carbamoyl phosphate synthetase (CPS) and ornithine transcarbamylase (OTC), were upregulated under hyperosmotic challenges. Based on these findings the present work demonstrates that the glutamate/glutamine cycle and subsequent transepithelial transport of nitrogenous waste in branchial epithelia represents an essential component for the maintenance of ionic homeostasis under a hyperosmotic challenge.
Collapse
Affiliation(s)
- Pei-Chen Huang
- Marine Research Station, Institute of Cellular and organismic Biology, Academia Sinica, I-Lan County, Taiwan (ROC)
| | - Tzu-Yen Liu
- Marine Research Station, Institute of Cellular and organismic Biology, Academia Sinica, I-Lan County, Taiwan (ROC)
| | - Marian Y Hu
- Institute of Physiology, Christian-Albrechts University Kiel, Kiel, Germany
| | - Isabel Casties
- Helmholtz Centre for Ocean Research Kiel (GEOMAR), Kiel, Germany
| | - Yung-Che Tseng
- Marine Research Station, Institute of Cellular and organismic Biology, Academia Sinica, I-Lan County, Taiwan (ROC).
| |
Collapse
|
6
|
Christensen EAF, Grosell M. Behavioural salinity preference of juvenile yellow perch Perca flavescens. JOURNAL OF FISH BIOLOGY 2018; 92:1620-1626. [PMID: 29504135 DOI: 10.1111/jfb.13583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 02/06/2018] [Indexed: 06/08/2023]
Abstract
The present study determined the behavioural salinity preference of a freshwater stock of juvenile yellow perch Perca flavescens acclimated to salinities of 0 and 10. The preferred salinities ranged between 7·3 and 13·0 (mean ± s.d. = 10·4 ± 1·7; n = 13) with no significant effect of acclimation salinity. The results showed that juvenile P. flavescens prefers near isoosmotic salinities, which could be due to a lowered energetic cost of osmoregulation.
Collapse
Affiliation(s)
- E A F Christensen
- Marine Biological Section, Department of Biology, University of Copenhagen, Strandpromenaden 5, 3000 Helsingør, Denmark
| | - M Grosell
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, Florida 33149, U.S.A
| |
Collapse
|
7
|
Tang CH, Leu MY, Yang WK, Tsai SC. Exploration of the mechanisms of protein quality control and osmoregulation in gills of Chromis viridis in response to reduced salinity. FISH PHYSIOLOGY AND BIOCHEMISTRY 2014; 40:1533-1546. [PMID: 24805086 DOI: 10.1007/s10695-014-9946-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 04/28/2014] [Indexed: 06/03/2023]
Abstract
Fish gills are the vital multifunctional organ in direct contact with external environment. Therefore, activation of the cytoprotective mechanisms to maintain branchial cell viability is important for fish upon stresses. Salinity is one of the major factors strongly affecting cellular and organismal functions. Reduction of ambient salinity may occur in coral reef and leads to osmotic stress for reef-associated stenohaline fish. However, the physiological responses to salinity stress in reef-associated fish were not examined substantially. With this regard, the physiological parameters and the responses of protein quality control (PQC) and osmoregulatory mechanisms in gills of seawater (SW; 33-35 ‰)- and brackish water (BW; 20 ‰)-acclimated blue-green damselfish (Chromis viridis) were explored. The results showed that the examined physiological parameters were maintained within certain physiological ranges in C. viridis acclimated to different salinities. In PQC mechanism, expression of heat-shock protein (HSP) 90, 70, and 60 elevated in response to BW acclimation while the levels of ubiquitin-conjugated proteins were similar between the two groups. Thus, it was presumed that upregulation of HSPs was sufficient to prevent the accumulation of aggregated proteins for maintaining the protein quality and viability of gill cells when C. viridis were acclimated to BW. Moreover, gill Na(+)/K(+)-ATPase expression and protein amounts of basolaterally located Na(+)/K(+)/2Cl(-) cotransporter were higher in SW fish than in BW fish. Taken together, this study showed that the cytoprotective and osmoregulatory mechanisms of blue-green damselfish were functionally activated and modulated to withstand the challenge of reduction in salinity for maintaining physiological homeostasis.
Collapse
Affiliation(s)
- Cheng-Hao Tang
- Institute of Marine Biotechnology, National Dong Hwa University, 2 Houwan Road, Checheng, Pingtung, 944, Taiwan,
| | | | | | | |
Collapse
|
8
|
Sutherland BJG, Hanson KC, Jantzen JR, Koop BF, Smith CT. Divergent immunity and energetic programs in the gills of migratory and resident Oncorhynchus mykiss. Mol Ecol 2014; 23:1952-64. [PMID: 24612010 DOI: 10.1111/mec.12713] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 03/04/2014] [Accepted: 03/05/2014] [Indexed: 12/24/2022]
Abstract
Divergent life history strategies occur in steelhead or rainbow trout Oncorhynchus mykiss, and many populations produce both migrant (anadromous fish that move to the ocean after rearing) and resident (do not migrate and remain in fresh water) individuals. Mechanisms leading to each type are only partially understood; while the general tendency of a population is heritable, individual tendency may be plastic, influenced by local environment. Steelhead hatchery programmes aim to mitigate losses in wild stocks by producing trout that will migrate to the ocean and not compete with wild trout for limited freshwater resources. To increase our understanding of gill function in these migratory or resident phenotypes, here we compare gill transcriptome profiles of hatchery-released fish either at the release site (residents) or five river kilometres downstream while still in full fresh water (migrants). To test whether any of these genes can be used as predictive markers for smoltification, we compared these genes between migrant-like and undifferentiated trout while still in the hatchery in a common environment (prerelease). Results confirmed the gradual process of smoltification, and the importance of energetics, gill remodelling and ion transport capacity for migrants. Additionally, residents overexpressed transcripts involved in antiviral defences, potentially for immune surveillance via dendritic cells in the gills. The best smoltification marker candidate was protein s100a4, expression of which was highly correlated with Na(+) , K(+) ATPase (NKA) activity and smolt-like morphology in pre- and postrelease trout gills.
Collapse
Affiliation(s)
- Ben J G Sutherland
- Department of Biology, Centre for Biomedical Research, University of Victoria, 3800 Finnerty Road, Victoria, British Columbia, V8W 3N5, Canada
| | | | | | | | | |
Collapse
|
9
|
Ern R, Huong DTT, Cong NV, Bayley M, Wang T. Effect of salinity on oxygen consumption in fishes: a review. JOURNAL OF FISH BIOLOGY 2014; 84:1210-20. [PMID: 24665828 DOI: 10.1111/jfb.12330] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 12/22/2013] [Indexed: 05/20/2023]
Abstract
The effect of salinity on resting oxygen uptake was measured in the perch Perca fluviatilis and available information on oxygen uptake in teleost species at a variety of salinities was reviewed. Trans-epithelial ion transport against a concentration gradient requires energy and exposure to salinities osmotically different from the body fluids therefore imposes an energetic demand that is expected to be lowest in brackish water compared to fresh and sea water. Across species, there is no clear trend between oxygen uptake and salinity, and estimates of cost of osmotic and ionic regulation vary from a few per cent to >30% of standard metabolism.
Collapse
Affiliation(s)
- R Ern
- Zoophysiology, Department of Biological Sciences, Aarhus University, Aarhus, Denmark
| | | | | | | | | |
Collapse
|
10
|
Guffey SC, Goss GG. Time course of the acute response of the North Pacific spiny dogfish shark (Squalus suckleyi) to low salinity. Comp Biochem Physiol A Mol Integr Physiol 2014; 171:9-15. [PMID: 24518388 DOI: 10.1016/j.cbpa.2014.02.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 01/23/2014] [Accepted: 02/04/2014] [Indexed: 10/25/2022]
Abstract
Dogfish are considered stenohaline sharks but are known to briefly enter estuaries. The acute response of North Pacific spiny dogfish (Squalus suckleyi) to lowered salinity was tested by exposing sharks to 21‰ salinity for 48 h. Temporal trends in blood pH, plasma osmolality, CO2, HCO3(-), Na(+), Cl(-), K(+), and urea concentrations, and in the rates of urea efflux and O2 consumption, were quantified. The rate of O2 consumption exhibited cyclic variation and was significantly depressed by lowered salinity. After 9 h, plasma [Cl(-)] stabilized at 9% below initial levels, while plasma [Na(+)] decreased by more than 20% within the first 12 h. Plasma [urea] dropped by 15% between 4 and 6 h, and continued to decrease. The rate of urea efflux increased over time, peaking after 36 h at 72% above the initial rate. Free-swimming sharks subjected to the same salinity challenge survived over 96 h and differed from cannulated sharks with respect to patterns of Na(+) and urea homeostasis. This high-resolution study reveals that dogfish exposed to 21‰ salinity can maintain homeostasis of Cl(-) and pH, but Na(+) and urea continue to be lost, likely accounting for the inability of the dogfish to fully acclimate to reduced salinity.
Collapse
Affiliation(s)
- Samuel C Guffey
- Department of Biological Sciences, CW405 Biological Sciences Bldg, University of Alberta, Edmonton, AB T6G 2E9, Canada; Bamfield Marine Sciences Centre, 100 Pachena Road, Bamfield, BC V0R 1B0, Canada.
| | - Greg G Goss
- Department of Biological Sciences, CW405 Biological Sciences Bldg, University of Alberta, Edmonton, AB T6G 2E9, Canada; Bamfield Marine Sciences Centre, 100 Pachena Road, Bamfield, BC V0R 1B0, Canada.
| |
Collapse
|
11
|
Tipsmark CK, Luckenbach JA, Madsen SS, Kiilerich P, Borski RJ. Osmoregulation and expression of ion transport proteins and putative claudins in the gill of southern flounder (Paralichthys lethostigma). Comp Biochem Physiol A Mol Integr Physiol 2008; 150:265-73. [PMID: 18467139 DOI: 10.1016/j.cbpa.2008.03.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2008] [Revised: 03/07/2008] [Accepted: 03/07/2008] [Indexed: 11/20/2022]
Abstract
The southern flounder is a euryhaline teleost that inhabits ocean, estuarine, and riverine environments. We investigated the osmoregulatory strategy of juvenile flounder by examining the time-course of homeostatic responses, hormone levels, and gill Na(+),K(+)-ATPase and Na(+),K(+),2Cl(-) cotransporter protein expression after salinity challenge. Transfer of freshwater (FW)-acclimated flounder to sea water (SW) induced an increase in plasma osmolality and cortisol and a decrease in muscle water content, plasma insulin-like growth factor I (IGF-I) and hepatic IGF-I mRNA, all returning to control levels after 4 days. Gill Na(+),K(+)-ATPase and Na(+),K(+),2Cl(-) cotransporter protein levels were elevated in response to SW after 4 days. Transfer of SW-acclimated flounder to FW reduced gill Na(+),K(+)-ATPase and Na(+),K(+),2Cl(-) cotransporter protein, increased plasma IGF-I, but did not alter hepatic IGF-I mRNA or plasma cortisol levels. Gill claudin-3 and claudin-4 immunoreactive proteins were elevated in FW versus SW acclimated flounder. The study demonstrates that successful acclimation of southern flounder to SW or FW occurs after an initial crisis period and that the salinity adaptation process is associated with changes in branchial expression of ion transport and putative tight junction claudin proteins known to regulate epithelial permeability in mammalian vertebrates.
Collapse
Affiliation(s)
- Christian K Tipsmark
- Department of Zoology, North Carolina State University, Raleigh, North Carolina 27695, USA.
| | | | | | | | | |
Collapse
|
12
|
Tang CH, Lee TH. The effect of environmental salinity on the protein expression of Na+/K+-ATPase, Na+/K+/2Cl- cotransporter, cystic fibrosis transmembrane conductance regulator, anion exchanger 1, and chloride channel 3 in gills of a euryhaline teleost, Tetraodon nigroviridis. Comp Biochem Physiol A Mol Integr Physiol 2007; 147:521-8. [PMID: 17347004 DOI: 10.1016/j.cbpa.2007.01.679] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2006] [Revised: 01/30/2007] [Accepted: 01/30/2007] [Indexed: 11/29/2022]
Abstract
Chloride transport mechanisms in the gills of the estuarine spotted green pufferfish (Tetraodon nigroviridis) were investigated. Protein abundance of Na(+)/K(+)-ATPase (NKA) and the other four chloride transporters, i.e., Na(+)/K(+)/2Cl(-) cotransporter (NKCC), cystic fibrosis transmembrane conductance regulator (CFTR), Cl(-)/HCO(3)(-) anion exchanger 1 (AE1), and chloride channel 3 (CLC-3) in gills of the seawater- (SW; 35 per thousand) or freshwater (FW)-acclimatized fish were examined by immunoblot analysis. Appropriate negative controls were used to confirm the specificity of the antibodies to the target proteins. The relative protein abundance of NKA was higher (i.e., 2-fold) in gills of the SW group compared to the FW group. NKCC and CFTR were expressed in gills of the SW group but not in the FW group. In contrast, the levels of relative protein abundance of branchial AE1 and CLC-3 in the FW group were 23-fold and 2.7-fold higher, respectively, compared to those of the SW group. This study is first of its kind to provide direct in vivo evidence of the protein expression of CLC-3 in teleostean gills, as well as to examine the simultaneous protein expression of the Cl(-) transporters, especially AE1 and CLC-3 of FW- and SW-acclimatized teleosts. The differential protein expression of NKA, chloride transporters in gills of the FW- and SW-acclimatized T. nigroviridis observed in the present study shows their close relationship to the physiological homeostasis (stable blood osmolality), as well as explains the impressive ionoregulatory ability of this euryhaline species in response to salinity challenges.
Collapse
Affiliation(s)
- C H Tang
- Department of Life Sciences, National Chung-Hsing University, Taichung 402, Taiwan
| | | |
Collapse
|
13
|
Gonzalez RJ, Cooper J, Head D. Physiological responses to hyper-saline waters in sailfin mollies (Poecilia latipinna). Comp Biochem Physiol A Mol Integr Physiol 2005; 142:397-403. [PMID: 16257552 DOI: 10.1016/j.cbpa.2005.08.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2004] [Revised: 08/08/2005] [Accepted: 08/09/2005] [Indexed: 11/30/2022]
Abstract
We examined the ionoregulatory physiology and biochemistry of the teleost sailfin molly (Poecilia latipinna), an inhabitant of salt marshes along the gulf coast, during exposure to hyper-saline waters (salinity range 35-95 ppt). Mollies were able to tightly control plasma Na(+) and Cl(-) concentrations and tissue water levels up to 65 ppt, but at higher salinities plasma ion levels began to rise and muscle water content dropped. Still, even at the highest salinity (90 ppt) plasma Na(+) and Cl(-) levels were only 32% and 39%, respectively, above levels at 35 ppt. Drinking rates at 60 ppt climbed 35%, while gut Na(+)/K(+)-ATPase (NAK) activity rose 70% and branchial NAK activity jumped 200%. The relatively small rise in drinking rate, in the face of a more than doubling of the osmotic gradient, suggests that a reduction in branchial water permeability significantly limited water loss and associated salt load. At 80 ppt, a salinity where plasma ion levels just begin to rise, drinking rate rose more rapidly, but gut and gill NAK activity did not, suggesting that mollies employed other pathways (perhaps renal) of salt excretion. At higher salinities, plasma ion levels continued to rise and muscle water content fell slightly indicating the beginnings of internal osmotic disturbances. To evaluate the energetic costs of hyper-salinity on mollies we measured the rate of O(2) consumption and found it rose with salinity, in sharp contrast to virtually all species previously examined. Interestingly, despite higher metabolism, growth was unaffected by hyper-salinity.
Collapse
Affiliation(s)
- R J Gonzalez
- Department of Biology, University of San Diego, 5998 Alcalá Park, San Diego, CA 92110, USA.
| | | | | |
Collapse
|
14
|
Takei Y, Hirose S. The natriuretic peptide system in eels: a key endocrine system for euryhalinity? Am J Physiol Regul Integr Comp Physiol 2002; 282:R940-51. [PMID: 11893596 DOI: 10.1152/ajpregu.00389.2001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The natriuretic peptide system of a euryhaline teleost, the Japanese eel (Anguilla japonica), consists of three types of hormones [atrial natriuretic peptide (ANP), ventricular natriuretic peptide (VNP), and C-type natriuretic peptide (CNP)] and four types of receptors [natriuretic peptide receptors (NPR)-A, -B, -C, and -D]. Although ANP is recognized as a volume-regulating hormone that extrudes both Na(+) and water in mammals, ANP more specifically extrudes Na(+) in eels. Accumulating evidence shows that ANP is secreted in response to hypernatremia and acts to inhibit the uptake and to stimulate the excretion of Na(+) but not water, thereby promoting seawater (SW) adaptation. In fact, ANP is secreted immediately after transfer of eels to SW and ameliorates sudden increases in plasma Na(+) concentration through inhibition of drinking and intestinal absorption of NaCl. ANP also stimulates the secretion of cortisol, a long-acting hormone for SW adaptation, whereas ANP itself disappears quickly from the circulation. Thus ANP is a primary hormone responsible for the initial phase of SW adaptation. By contrast, CNP appears to be a hormone involved in freshwater (FW) adaptation. Recent data show that the gene expression of CNP and its specific receptor, NPR-B, is much enhanced in FW eels. In fact, CNP infusion increases (22)Na uptake from the environment in FW eels. These results show that ANP and CNP, despite high sequence identity, have opposite effects on salinity adaptation in eels. This difference apparently originates from the difference in their specific receptors, ANP for NPR-A and CNP for NPR-B. VNP may compensate the effects of ANP and CNP for adaptation to respective media, because it has high affinity to both receptors. On the basis of these data, the authors suggest that the natriuretic peptide system is a key endocrine system that allows this euryhaline fish to adapt to diverse osmotic environments, particularly in the initial phase of adaptation.
Collapse
Affiliation(s)
- Yoshio Takei
- Ocean Research Institute, the University of Tokyo, Nakano-ku, Tokyo 164-8639, Japan.
| | | |
Collapse
|
15
|
Kelly SP, Wood CM. The cultured branchial epithelium of the rainbow trout as a model for diffusive fluxes of ammonia across the fish gill. J Exp Biol 2001; 204:4115-24. [PMID: 11809786 DOI: 10.1242/jeb.204.23.4115] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYA novel branchial epithelial preparation grown in L-15 medium in culture was used as a model system for understanding the diffusion of ammonia across the gills of the rainbow trout Oncorhynchus mykiss. The epithelium is known to contain both respiratory and mitochondria-rich cells in the approximate proportion in which they occur in vivo and to exhibit diffusive fluxes of Na+ and Cl– similar to in vivo values, but does not exhibit active apical-to-basolateral transport of Na+. Transepithelial resistance and paracellular permeability are also known to increase when the apical medium is changed from L-15 medium (symmetrical conditions) to fresh water (asymmetrical conditions). In the present study, net basolateral-to-apical ammonia fluxes increased as basolateral total ammonia concentration, basolateral-to-apical pH gradients and basolateral-to-apical PNH3 gradients were experimentally increased and were greater under asymmetrical than under symmetrical conditions. The slope of the relationship between ammonia flux and PNH3 gradient (i.e. NH3 permeability) was the same under both conditions and similar to values for other epithelia. The higher fluxes under asymmetrical conditions were explained by an apparent diffusive flux of NH4+ that was linearly correlated with transepithelial conductance and was probably explained by the higher electrochemical gradient and higher paracellular permeability when fresh water was present on the apical surface. In this situation, NH4+ diffusion was greater than NH3 diffusion under conditions representative of in vivo values, but overall fluxes amounted to only approximately 20 % of those in vivo. These results suggest that branchial ammonia excretion in the intact animal is unlikely to be explained by diffusion alone and, therefore, that carrier-mediated transport may play an important role.
Collapse
Affiliation(s)
- S P Kelly
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4K1
| | | |
Collapse
|
16
|
|
17
|
Eckert SM, Yada T, Shepherd BS, Stetson MH, Hirano T, Grau EG. Hormonal control of osmoregulation in the channel catfish Ictalurus punctatus. Gen Comp Endocrinol 2001; 122:270-86. [PMID: 11356039 DOI: 10.1006/gcen.2001.7633] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Prolactin (PRL) is an important hormone for freshwater adaptation in many teleost species. In some euryhaline fishes, growth hormone (GH) and cortisol are involved in seawater adaptation by stimulating ion extrusion. When channel catfish (Ictalurus punctatus) were transferred from fresh water to dilute seawater (300-400 mOsm), their plasma osmolality was always higher than the environmental salinity. In correlation with the increase in plasma osmolality, significant increases in plasma cortisol were observed. However, no effect of ovine GH or cortisol was seen in plasma osmolality or gill Na, K-ATPase activity when the hormones were given during the course of acclimation to dilute seawater. When catfish in fresh water were hypophysectomized, plasma osmolality was significantly decreased by 24 h, reaching a minimum level after 2 days. When they were transferred to dilute seawater, the plasma osmolality of the sham-operated fish was consistently higher than that of environmental water, whereas the osmolality of the hypophysectomized fish was equivalent to the environmental salinity. Ovine PRL restored the plasma osmolality of the hypophysectomized fish in fresh water to the level of sham-operated fish. Cortisol was also effective, but the effect was less pronounced than the effect of PRL. Injection of PRL in combination with cortisol resulted in a marked additive increase in plasma osmolality to a level even above that of the sham-operated fish. Ovine GH was without effect. These treatments in hypophysectomized fish transferred to dilute seawater produced essentially the same results as those in fish in fresh water. Plasma osmolality was also increased after PRL treatment of the intact fish in fresh water. There was a synergistic effect between PRL and cortisol in hypophysectomized fish in dilute seawater as well as in intact fish in fresh water. PRL did not stimulate cortisol secretion either in hypophysectomized fish or in intact fish. In the stenohaline catfish, both PRL and cortisol seem to be involved importantly in ion uptake from the environment not only in fresh water but also in brackish water.
Collapse
Affiliation(s)
- S M Eckert
- Hawaii Institute of Marine Biology, University of Hawaii, Coconut Island, Kaneohe, Hawaii 96744, USA
| | | | | | | | | | | |
Collapse
|
18
|
|
19
|
Physiological and Respiratory Responses of the Mozambique Tilapia (Oreochromis mossambicus) to Salinity Acclimation. ACTA ACUST UNITED AC 1997. [DOI: 10.1016/s0300-9629(96)00261-7] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
20
|
Takei Y, Takahashi A, Watanabe TX, Nakajima K, Sakakibara S. A novel natriuretic peptide isolated from eel cardiac ventricles. FEBS Lett 1991; 282:317-20. [PMID: 1828035 DOI: 10.1016/0014-5793(91)80504-v] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A new natriuretic peptide, which exhibits the entire spectrum of actions known to be characteristic of atrial and brain natriuretic peptides (ANP and BNP), was isolated from eel cardiac ventricles and has been named ventricular natriuretic peptide (VNP). The primary structure of eel VNP is characterized by its uniquely long C-terminal 'tail' that extends from the second half-cystine. Thus, eel VNP appears to be a novel natriuretic peptide of a type not found in mammals. With respect to natriuretic (rat) and vasodepressor (rat and eel) activities, eel VNP is much more potent than human ANP in eels and almost equipotent in rats. Strong tachyphylaxis is observed for the vasodepressor effect in both rats and eels, whereas it is not observed for the natriuretic effect in rats.
Collapse
Affiliation(s)
- Y Takei
- Department of Physiology, Kitasato University School of Medicine, Kanagawa, Japan
| | | | | | | | | |
Collapse
|