1
|
Marinović Z, Li Q, Lujić J, Iwasaki Y, Csenki Z, Urbányi B, Yoshizaki G, Horváth Á. Preservation of zebrafish genetic resources through testis cryopreservation and spermatogonia transplantation. Sci Rep 2019; 9:13861. [PMID: 31554831 PMCID: PMC6761286 DOI: 10.1038/s41598-019-50169-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 08/24/2019] [Indexed: 12/16/2022] Open
Abstract
Zebrafish is one of the most commonly used model organisms in biomedical, developmental and genetic research. The production of several thousands of transgenic lines is leading to difficulties in maintaining valuable genetic resources as cryopreservation protocols for eggs and embryos are not yet developed. In this study, we utilized testis cryopreservation (through both slow-rate freezing and vitrification) and spermatogonia transplantation as effective methods for long-term storage and line reconstitution in zebrafish. During freezing, utilization of 1.3 M of dimethyl sulfoxide (Me2SO) displayed the highest spermatogonia viability (~60%), while sugar and protein supplementation had no effects. Needle-immersed vitrification also yielded high spermatogonia viability rates (~50%). Both optimal slow-rate freezing and vitrification protocols proved to be reproducible in six tested zebrafish lines after displaying viability rates of >50% in all lines. Both fresh and cryopreserved spermatogonia retained their ability to colonize the recipient gonads after intraperitoneal transplantation of vasa::egfp and actb:yfp spermatogonia into wild-type AB recipient larvae. Colonization rate was significantly higher in dnd-morpholino sterilized recipients than in non-sterilized recipients. Lastly, wild-type recipients produced donor-derived sperm and donor-derived offspring through natural spawning. The method demonstrated in this study can be used for long-term storage of valuable zebrafish genetic resources and for reconstitution of whole zebrafish lines which will greatly improve the current preservation practices.
Collapse
Affiliation(s)
- Zoran Marinović
- Department of Aquaculture, Szent István University, Páter Károly u. 1., H-2100, Gödöllő, Hungary
| | - Qian Li
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, 108-8477, Tokyo, Japan
| | - Jelena Lujić
- Department of Aquaculture, Szent István University, Páter Károly u. 1., H-2100, Gödöllő, Hungary.
| | - Yoshiko Iwasaki
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, 108-8477, Tokyo, Japan
| | - Zsolt Csenki
- Department of Aquaculture, Szent István University, Páter Károly u. 1., H-2100, Gödöllő, Hungary
| | - Béla Urbányi
- Department of Aquaculture, Szent István University, Páter Károly u. 1., H-2100, Gödöllő, Hungary
| | - Goro Yoshizaki
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, 108-8477, Tokyo, Japan
| | - Ákos Horváth
- Department of Aquaculture, Szent István University, Páter Károly u. 1., H-2100, Gödöllő, Hungary
| |
Collapse
|
2
|
Gilmour KM. New insights into the many functions of carbonic anhydrase in fish gills. Respir Physiol Neurobiol 2012; 184:223-30. [PMID: 22706265 DOI: 10.1016/j.resp.2012.06.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 05/31/2012] [Accepted: 06/01/2012] [Indexed: 01/25/2023]
Abstract
Carbonic anhydrase (CA) is a zinc metalloenzyme that catalyzes the reversible reactions of carbon dioxide and water: CO(2) + H(2)O ↔ H(+) + HCO(3)(-). It has long been recognized that CA is abundant in the fish gill, with attention focused on the role of CA in catalyzing the hydration of CO(2) to provide H(+) and HCO(3)(-) for the branchial ion transport processes that underlie systemic ionic and acid-base regulation. Recent work has explored the diversity of CA isoforms in the fish gill. By linking these isoforms to different cell types in the gill, and by exploiting the diversity of fish species available for study, this work is increasing our understanding of the many roles that CA plays in the fish gill. In particular, recent work has revealed that fish utilize more than one model of CO(2) excretion, that to understand the role of CA and the gill in ionic regulation and acid-base balance means characterizing the transporter and CA complement of individual cell types, and that CA plays roles in branchial sensory mechanisms. The goal of this brief review is to summarize these new developments, while at the same time highlighting key areas in which further research is needed.
Collapse
Affiliation(s)
- Kathleen M Gilmour
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, K1N 6N5, Canada.
| |
Collapse
|