1
|
Cheaha D, Basor N, Manor R, Hayeemasae N, Samerphob N. Sedative and hypnotic effects with cortical EEG sleep-wake profiles of Millingtonia hortensis dried flower aqueous in mice. Heliyon 2024; 10:e37531. [PMID: 39296192 PMCID: PMC11409071 DOI: 10.1016/j.heliyon.2024.e37531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/26/2024] [Accepted: 09/04/2024] [Indexed: 09/21/2024] Open
Abstract
The ethnopharmacological relevance of the Millingtonia hortensis (M. hortensis) flower's aqueous extract lies in its traditional use as a herbal remedy in Southeast Asia. With a rich history in folk medicine, this aqueous has been esteemed for its purported sedative and anxiolytic properties. Our research delves into the scientific basis of these traditional claims, exploring the potential mechanisms underlying the observed effects of M. hortensis flower's aqueous extract on sleep promotion and mood regulation. This study aimed to explore the sleep-promoting effects of M. hortensis dried flower in mice, using an aqueous concentration equivalent to a human concentration of 2.7 mg/mL. Anxiolytic and antidepressant properties were evaluated using behavioural tests, while electroencephalography (EEG) analysis probed the neural mechanisms underlying sleep promotion post-consumption. The aqueous extract of M. hortensis dried flower administered to mice showed a decrease in immobility in the forced swimming test, demonstrating antidepressant-like effects. Moreover, mice treated with M. hortensis aqueous exhibited increased non-rapid eye movement (NREM) sleep duration, corroborating sleep-promoting potential. EEG analysis of mice treated with M. hortensis aqueous revealed heightened beta oscillations in the frontal and parietal cortex, while pre-treatment with M. hortensis aqueous or diazepam enhanced rapid eye movement (REM) sleep after thiopental administration. Interestingly, M. hortensis aqueous pre-treatment augmented delta frequency ranges in the frontal cortex. Overall, these findings indicate that M. hortensis dried flower's aqueous extract, at a human-equivalent dosage, exerts significant behavioural and neural effects specifically, sedative and hypnotic aspects in mice, corroborating its potential as a natural remedy to promote sleep and regulate mood.
Collapse
Affiliation(s)
- Dania Cheaha
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Thailand
| | - Nurulhuda Basor
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Thailand
| | - Rodiya Manor
- Faculty of Science and Technology, Prince of Songkla University, Thailand
| | - Nabil Hayeemasae
- Faculty of Science and Technology, Prince of Songkla University, Thailand
| | - Nifareeda Samerphob
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Thailand
| |
Collapse
|
2
|
Rothärmel M, Quesada P, Husson T, Harika-Germaneau G, Nathou C, Guehl J, Dalmont M, Opolczynski G, Miréa-Grivel I, Millet B, Gérardin E, Compère V, Dollfus S, Jaafari N, Bénichou J, Thill C, Guillin O, Moulier V. The priming effect of repetitive transcranial magnetic stimulation on clinical response to electroconvulsive therapy in treatment-resistant depression: a randomized, double-blind, sham-controlled study. Psychol Med 2023; 53:2060-2071. [PMID: 34579796 DOI: 10.1017/s0033291721003810] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Electroconvulsive therapy (ECT) is one of the most effective treatments for treatment-resistant depression (TRD). However, due to response delay and cognitive impairment, ECT remains an imperfect treatment. Compared to ECT, repetitive transcranial magnetic stimulation (rTMS) is less effective at treating severe depression, but has the advantage of being quick, easy to use, and producing almost no side effects. In this study, our objective was to assess the priming effect of rTMS sessions before ECT on clinical response in patients with TRD. METHODS In this multicenter, randomized, double-blind, sham-controlled trial, 56 patients with TRD were assigned to active or sham rTMS before ECT treatment. Five sessions of active/sham neuronavigated rTMS were administered over the left dorsolateral prefrontal cortex (20 Hz, 90% resting motor threshold, 20 2 s trains with 60-s intervals, 800 pulses/session) before ECT (which was active for all patients) started. Any relative improvements were then compared between both groups after five ECT sessions, in order to assess the early response to treatment. RESULTS After ECT, the active rTMS group exhibited a significantly greater relative improvement than the sham group [43.4% (28.6%) v. 25.4% (17.2%)]. The responder rate in the active group was at least three times higher. Cognitive complaints, which were assessed using the Cognitive Failures Questionnaire, were higher in the sham rTMS group compared to the active rTMS group, but this difference was not corroborated by cognitive tests. CONCLUSIONS rTMS could be used to enhance the efficacy of ECT in patients with TRD. ClinicalTrials.gov: NCT02830399.
Collapse
Affiliation(s)
- Maud Rothärmel
- University Department of Psychiatry, Centre d'Excellence Thérapeutique- Institut de Psychiatrie-Centre Hospitalier du Rouvray, Sotteville-lès-Rouen, France
| | - Pierre Quesada
- University Department of Psychiatry, Centre d'Excellence Thérapeutique- Institut de Psychiatrie-Centre Hospitalier du Rouvray, Sotteville-lès-Rouen, France
| | - Thomas Husson
- University Department of Psychiatry, Centre d'Excellence Thérapeutique- Institut de Psychiatrie-Centre Hospitalier du Rouvray, Sotteville-lès-Rouen, France
- Rouen University Hospital, Rouen, France
- INSERM U 1245 University of Rouen, Rouen, France
| | | | - Clément Nathou
- UNICAEN, ISTS, EA 7466, GIP Cyceron, Caen 14000, France
- CHU de Caen, Service de Psychiatrie adulte, Caen 14000, France
- UFR Santé UNICAEN, 2 rue des Rochambelles, Caen 14000, France
| | - Julien Guehl
- University Department of Psychiatry, Centre d'Excellence Thérapeutique- Institut de Psychiatrie-Centre Hospitalier du Rouvray, Sotteville-lès-Rouen, France
| | - Marine Dalmont
- University Department of Psychiatry, Centre d'Excellence Thérapeutique- Institut de Psychiatrie-Centre Hospitalier du Rouvray, Sotteville-lès-Rouen, France
- Rouen University Hospital, Rouen, France
| | - Gaëlle Opolczynski
- University Department of Psychiatry, Centre d'Excellence Thérapeutique- Institut de Psychiatrie-Centre Hospitalier du Rouvray, Sotteville-lès-Rouen, France
| | - Iris Miréa-Grivel
- University Department of Psychiatry, Centre d'Excellence Thérapeutique- Institut de Psychiatrie-Centre Hospitalier du Rouvray, Sotteville-lès-Rouen, France
| | - Bruno Millet
- Department of Adult Psychiatry, boulevard de l'Hôpital, Hôpital Universitaire de la Pitié-Salpêtrière, Assistance Publique-Hôpitaux de, Paris 75013, France
| | - Emmanuel Gérardin
- Department of Neuroradiology, Rouen University Hospital, Rouen, France
| | - Vincent Compère
- Department of Anaesthesiology and Intensive Care, Rouen University Hospital, Rouen, France
| | - Sonia Dollfus
- UNICAEN, ISTS, EA 7466, GIP Cyceron, Caen 14000, France
- CHU de Caen, Service de Psychiatrie adulte, Caen 14000, France
- UFR Santé UNICAEN, 2 rue des Rochambelles, Caen 14000, France
| | | | - Jacques Bénichou
- Department of Biostatistics, Rouen University Hospital, Rouen, France
- INSERM U 1018, University of Rouen, Rouen, France
| | - Caroline Thill
- Department of Biostatistics, Rouen University Hospital, Rouen, France
| | - Olivier Guillin
- University Department of Psychiatry, Centre d'Excellence Thérapeutique- Institut de Psychiatrie-Centre Hospitalier du Rouvray, Sotteville-lès-Rouen, France
- Rouen University Hospital, Rouen, France
- INSERM U 1245 University of Rouen, Rouen, France
- Faculté de Médecine, Normandie University, Rouen, France
| | - Virginie Moulier
- University Department of Psychiatry, Centre d'Excellence Thérapeutique- Institut de Psychiatrie-Centre Hospitalier du Rouvray, Sotteville-lès-Rouen, France
- EPS Ville Evrard, Unité de Recherche Clinique, Neuilly-sur-Marne, France
| |
Collapse
|
3
|
Singh H, Vogel RW, Lober RM, Doan AT, Matsumoto CI, Kenning TJ, Evans JJ. Intraoperative Neurophysiological Monitoring for Endoscopic Endonasal Approaches to the Skull Base: A Technical Guide. SCIENTIFICA 2016; 2016:1751245. [PMID: 27293965 PMCID: PMC4886091 DOI: 10.1155/2016/1751245] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 04/04/2016] [Accepted: 04/11/2016] [Indexed: 06/06/2023]
Abstract
Intraoperative neurophysiological monitoring during endoscopic, endonasal approaches to the skull base is both feasible and safe. Numerous reports have recently emerged from the literature evaluating the efficacy of different neuromonitoring tests during endonasal procedures, making them relatively well-studied. The authors report on a comprehensive, multimodality approach to monitoring the functional integrity of at risk nervous system structures, including the cerebral cortex, brainstem, cranial nerves, corticospinal tract, corticobulbar tract, and the thalamocortical somatosensory system during endonasal surgery of the skull base. The modalities employed include electroencephalography, somatosensory evoked potentials, free-running and electrically triggered electromyography, transcranial electric motor evoked potentials, and auditory evoked potentials. Methodological considerations as well as benefits and limitations are discussed. The authors argue that, while individual modalities have their limitations, multimodality neuromonitoring provides a real-time, comprehensive assessment of nervous system function and allows for safer, more aggressive management of skull base tumors via the endonasal route.
Collapse
Affiliation(s)
- Harminder Singh
- Stanford Hospitals and Clinics, Department of Neurosurgery, 300 Pasteur Drive, Stanford, CA 94305, USA
| | - Richard W. Vogel
- Safe Passage Neuromonitoring, 915 Broadway, Suite 1200, New York, NY 10010, USA
| | - Robert M. Lober
- Stanford Hospitals and Clinics, Department of Neurosurgery, 300 Pasteur Drive, Stanford, CA 94305, USA
| | - Adam T. Doan
- Safe Passage Neuromonitoring, 915 Broadway, Suite 1200, New York, NY 10010, USA
| | - Craig I. Matsumoto
- Sentient Medical Systems, 11011 McCormick Road, Suite 200, Hunt Valley, MD 21031, USA
| | - Tyler J. Kenning
- Department of Neurosurgery, Albany Medical Center, Physicians Pavilion, First Floor, 47 New Scotland Avenue, MC 10, Albany, NY 12208, USA
| | - James J. Evans
- Thomas Jefferson University Hospital, Department of Neurosurgery, 909 Walnut Street, Third Floor, Philadelphia, PA 19107, USA
| |
Collapse
|
4
|
Anier A, Lipping T, Ferenets R, Puumala P, Sonkajärvi E, Rätsep I, Jäntti V. Relationship between approximate entropy and visual inspection of irregularity in the EEG signal, a comparison with spectral entropy. Br J Anaesth 2012; 109:928-34. [DOI: 10.1093/bja/aes312] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
5
|
Lipping T, Rorarius M, Jäntti V, Annala K, Mennander A, Ferenets R, Toivonen T, Toivo T, Värri A, Korpinen L. Using the nonlinear control of anaesthesia-induced hypersensitivity of EEG at burst suppression level to test the effects of radiofrequency radiation on brain function. NONLINEAR BIOMEDICAL PHYSICS 2009; 3:5. [PMID: 19615084 PMCID: PMC2723106 DOI: 10.1186/1753-4631-3-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2009] [Accepted: 07/18/2009] [Indexed: 05/28/2023]
Abstract
BACKGROUND In this study, investigating the effects of mobile phone radiation on test animals, eleven pigs were anaesthetised to the level where burst-suppression pattern appears in the electroencephalogram (EEG). At this level of anaesthesia both human subjects and animals show high sensitivity to external stimuli which produce EEG bursts during suppression. The burst-suppression phenomenon represents a nonlinear control system, where low-amplitude EEG abruptly switches to very high amplitude bursts. This switching can be triggered by very minor stimuli and the phenomenon has been described as hypersensitivity. To test if also radio frequency (RF) stimulation can trigger this nonlinear control, the animals were exposed to pulse modulated signal of a GSM mobile phone at 890 MHz. In the first phase of the experiment electromagnetic field (EMF) stimulation was randomly switched on and off and the relation between EEG bursts and EMF stimulation onsets and endpoints were studied. In the second phase a continuous RF stimulation at 31 W/kg was applied for 10 minutes. The ECG, the EEG, and the subcutaneous temperature were recorded. RESULTS No correlation between the exposure and the EEG burst occurrences was observed in phase I measurements. No significant changes were observed in the EEG activity of the pigs during phase II measurements although several EEG signal analysis methods were applied. The temperature measured subcutaneously from the pigs' head increased by 1.6 degrees C and the heart rate by 14.2 bpm on the average during the 10 min exposure periods. CONCLUSION The hypothesis that RF radiation would produce sensory stimulation of somatosensory, auditory or visual system or directly affect the brain so as to produce EEG bursts during suppression was not confirmed.
Collapse
|
6
|
Joutsen A, Puumala P, Lyytikäinen LP, Pajulo O, Etelämäki A, Eskola H, Jäntti V. EEG sources of noise in intraoperative somatosensory evoked potential monitoring during propofol anesthesia. J Clin Monit Comput 2009; 23:237-42. [PMID: 19565340 DOI: 10.1007/s10877-009-9188-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Accepted: 06/17/2009] [Indexed: 11/26/2022]
Abstract
OBJECTIVE It was hypothesized that somato- sensory evoked potentials can be achieved faster by selective averaging during periods of low spontaneous electroen- cephalographic (EEG) activity. We analyzed the components of EEG that decrease the signal-to-noise ratio of somatosensory evoked potential (SEP) recordings during propofol anesthesia. METHODS Patient EEGs were recorded with a high sampling frequency during deep anesthesia, when EEGs were in burst suppression. EEGs were segmented visually into bursts, spindles, suppressions, and artifacts. Tibial somatosensory evoked potentials (tSEPs) were averaged offline separately for burst, suppression, and spindle segments using a signal bandwidth of 30-200 Hz. Averages achieved with 2, 4, 8, 16, 64, 128, and 256 responses were compared both visually, and by calculating the signal-to-noise ratios. RESULTS During bursts and spindles, the noise levels were similar and significantly higher than during suppressions. Four to eight times more responses had to be averaged during bursts and spindles than during suppressions in order to achieve a similar response quality. Averaging selectively during suppressions can therefore yield reliable tSEPs in approximately one-fifth of the time required during bursts. CONCLUSION The major source of EEG noise in tSEP recordings is the mixed frequency activity of the slow waves of bursts that occur during propofol anesthesia. Spindles also have frequency components that increase noise levels, but these are less important, as the number of spindles is fewer. The fastest way to obtain reliable tSEPs is by averaging selectively during suppressions.
Collapse
Affiliation(s)
- Atte Joutsen
- Department of Biomedical Engineering, Tampere University of Technology, Tampere, Finland.
| | | | | | | | | | | | | |
Collapse
|
7
|
Aho AJ, Yli-Hankala A, Lyytikäinen LP, Jäntti V. Facial muscle activity, Response Entropy, and State Entropy indices during noxious stimuli in propofol-nitrous oxide or propofol-nitrous oxide-remifentanil anaesthesia without neuromuscular block. Br J Anaesth 2008; 102:227-33. [PMID: 19112059 PMCID: PMC2638861 DOI: 10.1093/bja/aen356] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Entropy is an anaesthetic EEG monitoring method, calculating two numerical parameters: State Entropy (SE, range 0-91) and Response Entropy (RE, range 0-100). Low Entropy numbers indicate unconsciousness. SE uses the frequency range 0.8-32 Hz, representing predominantly the EEG activity. RE is calculated at 0.8-47 Hz, consisting of both EEG and facial EMG. RE-SE difference (RE-SE) can indicate EMG, reflecting nociception. We studied RE-SE and EMG in patients anaesthetized without neuromuscular blockers. METHODS Thirty-one women were studied in propofol-nitrous oxide (P) or propofol-nitrous oxide-remifentanil (PR) anaesthesia. Target SE value was 40-60. RE-SE was measured before and after endotracheal intubation, and before and after the commencement of surgery. The spectral content of the signal was analysed off-line. Appearance of EMG on EEG was verified visually. RESULTS RE, SE, and RE-SE increased during intubation in both groups. Elevated RE was followed by increased SE values in most cases. In these patients, spectral analysis of the signal revealed increased activity starting from low (<20 Hz) frequency area up to the highest measured frequencies. This was associated with appearance of EMG in raw signal. No spectral alterations or EMG were seen in patients with stable Entropy values. CONCLUSIONS Increased RE is followed by increased SE at nociceptive stimuli in patients not receiving neuromuscular blockers. Owing to their overlapping power spectra, the contribution of EMG and EEG cannot be accurately separated with frequency analysis in the range of 10-40 Hz.
Collapse
Affiliation(s)
- A J Aho
- Department of Anaesthesia, Tampere University Hospital, PO Box 2000, 33521 Tampere, Finland.
| | | | | | | |
Collapse
|