1
|
Kuhn YA, Taube W. Changes in the Brain with an External Focus of Attention: Neural Correlates. Exerc Sport Sci Rev 2025; 53:49-59. [PMID: 39690510 PMCID: PMC11895819 DOI: 10.1249/jes.0000000000000354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2024] [Indexed: 12/19/2024]
Abstract
Although it is well established that an external compared to an internal focus of attention enhances motor performance and learning, the underlying neural mechanisms remained relatively underexplored. Recent studies revealed that adopting different attentional strategies results in a differential corticomotor organization. These findings hold great potential for applying attentional strategies for healthy subjects and populations that display motor deficiencies.
Collapse
|
2
|
Greenhouse I. Inhibition for gain modulation in the motor system. Exp Brain Res 2022; 240:1295-1302. [DOI: 10.1007/s00221-022-06351-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/15/2022] [Indexed: 01/10/2023]
|
3
|
Leodori G, Thirugnanasambandam N, Conn H, Popa T, Berardelli A, Hallett M. Intracortical Inhibition and Surround Inhibition in the Motor Cortex: A TMS-EEG Study. Front Neurosci 2019; 13:612. [PMID: 31249507 PMCID: PMC6582275 DOI: 10.3389/fnins.2019.00612] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 05/28/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Short-latency intracortical inhibition (SICI) and motor surround inhibition (mSI) are cortical phenomena that have been investigated with transcranial magnetic stimulation (TMS). mSI is believed to be necessary for the execution of fine finger movements, SICI may participate in mSI genesis, and however, the mechanisms underlying both mSI and SICI are not entirely clear. OBJECTIVE We explored the cortical physiology of SICI and mSI in healthy subjects by TMS-evoked cortical potentials (TEPs). METHODS Single (sp) and paired-pulse (pp) TMS were delivered on the ADM muscle cortical hotspot while recording EEG and EMG. Three conditions were tested: spTMS and ppTMS at rest, and spTMS at the onset of an index finger movement. SICI and mSI were calculated on the ADM motor evoked potential (MEP) and two groups were defined based on the presence of mSI. Average TEPs were calculated for each condition and for five regions of interest. RESULTS At movement onset we observed a widespread reduction of the inhibitory late component N100 suggesting cortical facilitation associated with motor performance. At motor cortex level, SICI and mSI are associated with similar modulation of TEPs consisting in a reduction of P30 and an increase of N45 amplitude. CONCLUSION Our findings suggest that SICI and mSI modulate cortical excitability with shared inhibitory mechanisms.
Collapse
Affiliation(s)
| | - Nivethida Thirugnanasambandam
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke – National Institute of Health, Bethesda, MD, United States
| | - Hannah Conn
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke – National Institute of Health, Bethesda, MD, United States
| | - Traian Popa
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke – National Institute of Health, Bethesda, MD, United States
| | - Alfredo Berardelli
- IRCCS NEUROMED, Pozzilli, Italy
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke – National Institute of Health, Bethesda, MD, United States
| |
Collapse
|
4
|
Foerster Á, Dutta A, Kuo M, Paulus W, Nitsche MA. Effects of anodal transcranial direct current stimulation over lower limb primary motor cortex on motor learning in healthy individuals. Eur J Neurosci 2018; 47:779-789. [DOI: 10.1111/ejn.13866] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 02/07/2018] [Accepted: 02/07/2018] [Indexed: 12/28/2022]
Affiliation(s)
- Águida Foerster
- Department of Clinical Neurophysiology Universitätsmedizin Göttingen Georg‐August Universität Göttingen Germany
- Deptartment Psychology and Neurosciences Leibniz Research Centre for Working Environment and Human Factors Leibniz‐Institut für Arbeitsforschung Ardeystr. 67 44139 Dortmund Germany
| | - Anirban Dutta
- Department of Biomedical Engineering University at Buffalo Buffalo NY USA
| | - Min‐Fang Kuo
- Deptartment Psychology and Neurosciences Leibniz Research Centre for Working Environment and Human Factors Leibniz‐Institut für Arbeitsforschung Ardeystr. 67 44139 Dortmund Germany
| | - Walter Paulus
- Department of Clinical Neurophysiology Universitätsmedizin Göttingen Georg‐August Universität Göttingen Germany
| | - Michael A. Nitsche
- Deptartment Psychology and Neurosciences Leibniz Research Centre for Working Environment and Human Factors Leibniz‐Institut für Arbeitsforschung Ardeystr. 67 44139 Dortmund Germany
- Department of Neurology University Medical Hospital Bergmannsheil Bochum Germany
| |
Collapse
|
5
|
Surround inhibition can instantly be modulated by changing the attentional focus. Sci Rep 2018; 8:1085. [PMID: 29348536 PMCID: PMC5773585 DOI: 10.1038/s41598-017-19077-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 12/20/2017] [Indexed: 12/05/2022] Open
Abstract
To further investigate the mechanism of surround inhibition (SI) and to determine whether adopting different attentional strategies might have an impact on the modulation of SI, the effects of adopting an external (EF) or internal focus of attention (IF) on SI and motor performance were investigated. While performing an index flexion with either an EF or IF, transcranial magnetic stimulation was applied at various time points in 14 healthy subjects. When adopting an EF compared to an IF, the results show an improved motor performance (+14.7% in MVC) and a reduced bEMG in the adjacent APB (−22.3%) during maximal index flexion. This was accompanied by an increased SI in the APB with an EF (+26.4%). Additionally, the decrease in bEMG correlated with the magnitude of SI in APB. The current results demonstrate an efficient way to modulate SI by changing the attentional focus in healthy subjects and might, at least in part, explain the better motor performance being associated with an EF. The present findings help to better understand the positive mechanisms of an EF on SI in the healthy motor system and may also points towards a treatment strategy in pathologies with disturbed SI such as focal hand dystonia.
Collapse
|
6
|
Burns E, Chipchase LS, Schabrun SM. Reduced Short- and Long-Latency Afferent Inhibition Following Acute Muscle Pain: A Potential Role in the Recovery of Motor Output. PAIN MEDICINE 2016; 17:1343-1352. [PMID: 26874884 DOI: 10.1093/pm/pnv104] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 10/20/2015] [Accepted: 12/13/2015] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Corticomotor output is reduced in response to acute muscle pain, yet the mechanisms that underpin this effect remain unclear. Here the authors investigate the effect of acute muscle pain on short-latency afferent inhibition, long-latency afferent inhibition, and long-interval intra-cortical inhibition to determine whether these mechanisms could plausibly contribute to reduced motor output in pain. DESIGN Observational same subject pre-post test design. SETTING Neurophysiology research laboratory. SUBJECTS Healthy, right-handed human volunteers (n = 22, 9 male; mean age ± standard deviation, 22.6 ± 7.8 years). METHODS Transcranial magnetic stimulation was used to assess corticomotor output, short-latency afferent inhibition, long-latency afferent inhibition, and long-interval intra-cortical inhibition before, during, immediately after, and 15 minutes after hypertonic saline infusion into right first dorsal interosseous muscle. Pain intensity and quality were recorded using an 11-point numerical rating scale and the McGill Pain Questionnaire. RESULTS Compared with baseline, corticomotor output was reduced at all time points (p = 0.001). Short-latency afferent inhibition was reduced immediately after (p = 0.039), and long-latency afferent inhibition 15 minutes after (p = 0.035), the resolution of pain. Long-interval intra-cortical inhibition was unchanged at any time point (p = 0.36). CONCLUSIONS These findings suggest short- and long-latency afferent inhibition, mechanisms thought to reflect the integration of sensory information with motor output at the cortex, are reduced following acute muscle pain. Although the functional relevance is unclear, the authors hypothesize a reduction in these mechanisms may contribute to the restoration of normal motor output after an episode of acute muscle pain.
Collapse
Affiliation(s)
- Emma Burns
- *Brain Rehabilitation and Neuroplasticity Unit, School of Science and Health, Western Sydney University, Campbelltown, Sydney, New South Wales, Australia
| | - Lucinda Sian Chipchase
- *Brain Rehabilitation and Neuroplasticity Unit, School of Science and Health, Western Sydney University, Campbelltown, Sydney, New South Wales, Australia
| | - Siobhan May Schabrun
- *Brain Rehabilitation and Neuroplasticity Unit, School of Science and Health, Western Sydney University, Campbelltown, Sydney, New South Wales, Australia
| |
Collapse
|
7
|
Majid DSA, Lewis C, Aron AR. Training voluntary motor suppression with real-time feedback of motor evoked potentials. J Neurophysiol 2015; 113:3446-52. [PMID: 25744889 DOI: 10.1152/jn.00992.2014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 03/02/2015] [Indexed: 11/22/2022] Open
Abstract
Training people to suppress motor representations voluntarily could improve response control. We evaluated a novel training procedure of real-time feedback of motor evoked potentials (MEPs) generated by transcranial magnetic stimulation (TMS) over motor cortex. On each trial, a cue instructed participants to use a mental strategy to suppress a particular finger representation without overt movement. A single pulse of TMS was delivered over motor cortex, and an MEP-derived measure of hand motor excitability was delivered visually to the participant within 500 ms. In experiment 1, we showed that participants learned to reduce the excitability of a particular finger beneath baseline (selective motor suppression) within 30 min of practice. In experiment 2, we performed a double-blind study with 2 training groups (1 with veridical feedback and 1 with matched sham feedback) to show that selective motor suppression depends on the veridical feedback itself. Experiment 3 further demonstrated the importance of veridical feedback by showing that selective motor suppression did not arise from mere mental imagery, even when incentivized with reward. Thus participants can use real-time feedback of TMS-induced MEPs to discover an effective mental strategy for selective motor suppression. This high-temporal-resolution, trial-by-trial-feedback training method could be used to help people better control response tendencies and may serve as a potential therapy for motor disorders such as Tourette's and dystonia.
Collapse
Affiliation(s)
- D S Adnan Majid
- Department of Psychology and Neurosciences Graduate Program, University of California, San Diego, California
| | - Christina Lewis
- Department of Psychology and Neurosciences Graduate Program, University of California, San Diego, California
| | - Adam R Aron
- Department of Psychology and Neurosciences Graduate Program, University of California, San Diego, California
| |
Collapse
|
8
|
Abstract
Focal dystonias such as writer's cramp or blepharospasm are treatable with botulinum toxin injections and medications, but both therapies provide largely symptomatic relief. Because the basic abnormality in dystonia is at the synaptic level, brain modulating therapies with repetitive transcranial magnetic stimulation (rTMS) may well be able to produce lasting clinical improvement. Low-frequency threshold or subthreshold rTMS over the premotor cortex or anterior cingulate cortex, for hand dystonia and blepharospasm, respectively, could in the future become a more curative treatment, perhaps in conjunction with the current therapies.
Collapse
Affiliation(s)
- Kaji Ryuji
- Department of Neurology, Institute of Health-Bioscience, Tokushima University, Tokushima, Japan.
| |
Collapse
|
9
|
Noninvasive brain stimulation for motor recovery after stroke: mechanisms and future views. Stroke Res Treat 2012; 2012:584727. [PMID: 23050198 PMCID: PMC3463193 DOI: 10.1155/2012/584727] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 08/29/2012] [Indexed: 01/30/2023] Open
Abstract
Repetitive transcranial magnetic stimulation and transcranial direct current stimulation are noninvasive brain stimulation (NIBS) techniques that can alter excitability of the human cortex. Considering the interhemispheric competition occurring after stroke, improvement in motor deficits can be achieved by increasing the excitability of the affected hemisphere or decreasing the excitability of the unaffected hemisphere. Many reports have shown that NIBS application improves motor function in stroke patients by using their physiological peculiarity. For continuous motor improvement, it is important to impart additional motor training while NIBS modulates the neural network between both hemispheres and remodels the disturbed network in the affected hemisphere. NIBS can be an adjuvant therapy for developed neurorehabilitation strategies for stroke patients. Moreover, recent studies have reported that bilateral NIBS can more effectively facilitate neural plasticity and induce motor recovery after stroke. However, the best NIBS pattern has not been established, and clinicians should select the type of NIBS by considering the NIBS mechanism. Here, we review the underlying mechanisms and future views of NIBS therapy and propose rehabilitation approaches for appropriate cortical reorganization.
Collapse
|
10
|
Abstract
Surround inhibition is a physiological mechanism to focus neuronal activity in the central nervous system. This so-called center-surround organization is well known in sensory systems, where central signals are facilitated and eccentric signals are inhibited in order to sharpen the contrast between them. There is evidence that this mechanism is relevant to skilled motor behavior, and it is deficient, for example, in the affected primary motor cortex of patients with focal hand dystonia (FHD). While it is still not fully elucidated how surround inhibition is generated in healthy subjects, the process is enhanced with handedness and task difficulty indicating that it may be an important mechanism for the performance of individuated finger movements. In FHD, where involuntary overactivation of muscles interferes with precise finger movements, a loss of intracortical inhibition likely contributes to the loss of surround inhibition. Several intracortical inhibitory networks are modulated differently in FHD compared with healthy subjects, and these may contribute to the loss of surround inhibition. Surround inhibition can be observed and assessed in the primary motor cortex. It remains unclear, however, if the effects are created in the cortex or if they are derived from, or supported by, motor signals that come from the basal ganglia.
Collapse
|
11
|
Vaalto S, Säisänen L, Könönen M, Julkunen P, Hukkanen T, Määttä S, Karhu J. Corticospinal output and cortical excitation-inhibition balance in distal hand muscle representations in nonprimary motor area. Hum Brain Mapp 2010; 32:1692-703. [PMID: 20886574 DOI: 10.1002/hbm.21137] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 06/24/2010] [Accepted: 07/06/2010] [Indexed: 11/06/2022] Open
Abstract
Transcranial magnetic stimulation (TMS) of the superior frontal gyrus in the non-primary motor area (NPMA) can evoke motor-evoked potentials (MEPs) at 20 ms latency range in contralateral distal hand muscles similar to stimulation of M1 and indicating monosynaptic corticospinal tracts. We compared the intracortical inhibitory and excitatory balance in primary motor cortex (M1) and in NPMA by navigated single- and paired-pulse TMS (ppTMS). We also evaluated the spatial stability of muscle representations in M1 and NPMA by remapping 11 healthy subjects one year after the initial mapping. Resting motor threshold (rMT) was higher in NPMA than in M1 as were the MEP amplitudes evoked by 120% rMT stimulation intensity of the local MT. Short-interval intracortical inhibition (SICI) was significantly weaker in NPMA than in M1 at ISI of 2 ms and conditioning stimulus (CS) 80% rMT. Our findings suggest that the cortical hand representations in NPMA 1) are connected to lower motoneurons monosynaptically, 2) are less strictly organized, i.e. motoneuron population representing a discrete hand muscle is sparser and less dense than in M1 and 3) have the capacity to generate powerful, rapid muscle contraction if sufficient number of motoneurones are activated. In NPMA, local intracortical inhibitory and excitatory activity is mainly similar to that in M1. The lower SICI in NPMA at an ISI of 2 ms may reflect less strict topographic organization and readiness to reorganization of neural circuits during motor learning or after motor deficits.
Collapse
Affiliation(s)
- Selja Vaalto
- Department of Clinical Neurophysiology, University of Eastern Finland, Kuopio, Finland.
| | | | | | | | | | | | | |
Collapse
|
12
|
Beck S, Schubert M, Richardson SP, Hallett M. Surround inhibition depends on the force exerted and is abnormal in focal hand dystonia. J Appl Physiol (1985) 2009; 107:1513-8. [PMID: 19713426 DOI: 10.1152/japplphysiol.91580.2008] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
There is evidence that surround inhibition (SI), a neural mechanism to enhance contrast between signals, may play a role in primary motor cortex during movement initiation, while it is deficient in patients with focal hand dystonia (FHD). To further characterize SI with respect to different force levels, single- and paired-pulse transcranial magnetic stimulation was applied at rest and during index finger movement to evoke potentials in the nonsynergistic, abductor policis muscle. In Experiment 1, in 19 healthy volunteers, SI was tested using single-pulse transcranial magnetic stimulation. Motor-evoked potentials at rest were compared with those during contraction using four different force levels [5, 10, 20, and 40% of maximum force (F(max))]. In Experiments 2 and 3, SI and short intracortical inhibition (SICI) were tested, respectively, in 16 patients with FHD and 20 age-matched controls for the 10% and 20% F(max) levels. SI was most pronounced for 10% F(max) and abolished for the 40% F(max) level in controls, whereas FHD patients had no SI at all. In contrast, a loss of SICI was observed in FHD patients, which was more pronounced for 10% F(max) than for 20% F(max). Our results suggest that SI is involved in the generation of fine finger movements with low-force levels. The greater loss of SICI for the 10% F(max) level in patients with FHD than for the 20% F(max) level indicates that this inhibitory mechanism is more abnormal at lower levels of force.
Collapse
Affiliation(s)
- S Beck
- Human Motor Control Section, NINDS, National Institutes of Health, Bldg. 10/5N240, 10 Center Drive, Bethesda, MD 20892-1428, USA.
| | | | | | | |
Collapse
|
13
|
Turner TS, Tucker KJ, Rogasch NC, Semmler JG. Impaired neuromuscular function during isometric, shortening, and lengthening contractions after exercise-induced damage to elbow flexor muscles. J Appl Physiol (1985) 2008; 105:502-9. [DOI: 10.1152/japplphysiol.90421.2008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The purpose of this study was to examine the effect of exercise-induced damage of the elbow flexor muscles on steady motor performance during isometric, shortening, and lengthening contractions. Ten healthy individuals (age 22 ± 4 yr) performed four tasks with the elbow flexor muscles: a maximum voluntary contraction, a one repetition maximum (1 RM), an isometric task at three joint angles (short, intermediate, and long muscle lengths), and a constant-load task during slow (∼7°/s) shortening and lengthening contractions. Task performance was quantified as the fluctuations in wrist acceleration (steadiness), and electromyography was obtained from the biceps and triceps brachii muscles at loads of 10, 20, and 40% of 1 RM. Tasks were performed before, immediately after, and 24 h after eccentric exercise that resulted in indicators of muscle damage. Maximum voluntary contraction force and 1-RM load declined by ∼45% immediately after exercise and remained lower at 24 h (∼30% decrease). Eccentric exercise resulted in reduced steadiness and increased biceps and triceps brachii electromyography for all tasks. For the isometric task, steadiness was impaired at the short compared with the long muscle length immediately after exercise ( P < 0.01). Furthermore, despite no differences before exercise, there was reduced steadiness for the shortening compared with the lengthening contractions after exercise ( P = 0.01), and steadiness remained impaired for shortening contractions 24 h later ( P = 0.01). These findings suggest that there are profound effects for the performance of these types of fine motor tasks when recovering from a bout of eccentric exercise.
Collapse
|
14
|
Jeffery DT, Norton JA, Roy FD, Gorassini MA. Effects of transcranial direct current stimulation on the excitability of the leg motor cortex. Exp Brain Res 2007; 182:281-7. [PMID: 17717651 DOI: 10.1007/s00221-007-1093-y] [Citation(s) in RCA: 174] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2007] [Accepted: 07/31/2007] [Indexed: 10/22/2022]
Abstract
Transcranial direct current stimulation (tDCS) of the human motor cortex at an intensity of 1 mA has been shown to be efficacious in increasing (via anodal tDCS) or decreasing (via cathodal tDCS) the excitability of corticospinal projections to muscles of the hand. In this study, we examined whether tDCS at currents of 2 mA could effect similar changes in the excitability of deeper cortical structures that innervate muscles of the lower leg. Similar to the hand area, 10 min of stimulation with the anode over the leg area of the motor cortex increased the excitability of corticospinal tract projections to the tibialis anterior (TA) muscle, as reflected by an increase in the amplitude of the motor evoked potentials (MEPs) evoked by transcranial magnetic stimulation. MEP amplitudes recorded at rest and during a background contraction were increased following anodal tDCS and remained elevated at 60 min compared to baseline values by 59 and 35%, respectively. However, in contrast to the hand, hyperpolarizing cathodal stimulation at equivalent currents had minimal effect on the amplitude of the MEPs recorded at rest or during background contraction of the TA muscle. These results suggest that it is more difficult to suppress the excitability of the leg motor cortex with cathodal tDCS than the hand area of the motor cortex.
Collapse
Affiliation(s)
- Dean T Jeffery
- Centre for Neuroscience and Department of Biomedical Engineering, University of Alberta, Edmonton, AB, Canada
| | | | | | | |
Collapse
|
15
|
Léonard G, Tremblay F. Corticomotor facilitation associated with observation, imagery and imitation of hand actions: a comparative study in young and old adults. Exp Brain Res 2006; 177:167-75. [PMID: 16947064 DOI: 10.1007/s00221-006-0657-6] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2006] [Accepted: 07/26/2006] [Indexed: 11/29/2022]
Abstract
In the present report, we extent our previous findings (Clark et al. in Neuropsychologia 42:105-122, 2004) on corticomotor facilitation associated with covert (observation and imagery) and overt execution (action imitation) of hand actions to better delineate the selectivity of the effect in the context of an object-oriented action. A second aim was to examine whether the pattern of facilitation would be affected by age. Corticomotor facilitation was determined in two groups of participants (young n = 21, 24 +/- 2 years; old n = 19, 62 +/- 6 years) by monitoring changes in the amplitude and latency of motor evoked potentials (MEPs) elicited in hand muscles by transcranial magnetic stimulation. MEP responses were measured from both the first dorsal interosseous (FDI, task selective muscle) and the abductor digiti minimi (ADM) of the right hand while participants attended to four different video presentations. Each of four videos provided specific instructions for participants to either: (1) close their eyes and relax (REST), (2) observe the action attentively (OBS), (3) close their eyes and mentally simulate the action (IMAG), or (4) imitate the action (IMIT). The action depicted in the videos represented a male subject cutting a piece of material with scissors. In the young group, the pattern of results revealed selective facilitation in the FDI in conditions involving either covert (OBS and IMAG) or overt action execution (IMIT). In the ADM, only overt execution with action imitation was associated with significant MEP facilitation. In the old group, a similar pattern of results was observed, although the modulation was less selective than that seen in the young group. In fact, older individuals often exhibited concomitant facilitation in both the FDI and ADM during either covert (OBS and IMAG conditions) or overt action execution (IMIT condition). Taken together, these results further corroborate the notion that the corticomotor system is selectively active when actions are covertly executed through internal simulation triggered by observation or by motor imagery, as proposed by Jeannerod (Neuroimage 14:S103-S109, 2001). With aging, the ability to produce corticomotor facilitation in association with covert action execution appears to be largely preserved, although there seems to be a loss in selectivity. This lack of selectivity may, in turn, reflect age-related alterations in the function of the corticospinal system, which may impair the ability to individuate finger movements either in the covert or overt stage of action execution.
Collapse
Affiliation(s)
- Guillaume Léonard
- School of Rehabilitation Sciences, University of Ottawa, Ottawa, ON, Canada
| | | |
Collapse
|
16
|
Voller B, St Clair Gibson A, Dambrosia J, Pirio Richardson S, Lomarev M, Dang N, Hallett M. Short-latency afferent inhibition during selective finger movement. Exp Brain Res 2005; 169:226-31. [PMID: 16284755 DOI: 10.1007/s00221-005-0140-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2004] [Accepted: 07/16/2005] [Indexed: 10/25/2022]
Abstract
During individual finger movement, two opposite phenomena occur at the level of the central nervous system that could affect other intrinsic hand muscle representations, unintentional co-activation, and surround inhibition (SI). At rest, excitability in the motor cortex (M1) is inhibited at about 20 ms after electric stimulation of a peripheral nerve [short-latency afferent inhibition (SAI)]. We sought to determine whether SAI changes during selective index finger movement. Effects were measured by the response to transcranial magnetic stimulation in two functionally distinct target muscles of the hand [abductor digiti minimi muscle (ADM), first dorsal interosseus muscle (FDI)]. An increase in SAI in the ADM during index finger movement compared to at rest could help explain the genesis of SI. Electrical stimulation was applied to either the little finger (homotopic for ADM, heterotopic for FDI) or the index finger (heterotopic for ADM, homotopic for FDI). During index finger movement, homotopic SAI was present only in the ADM, and the effect of peripheral stimulation was greater when there was less co-activation. Heterotopic SAI found at rest disappeared with movement. We conclude that during movement, homotopic SAI on the muscle in the surround of the intended movement may contribute to SI.
Collapse
Affiliation(s)
- Bernhard Voller
- Human Motor Control Section, NINDS/NIH, Bldg. 10/5N226, 10 Center Dr., Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Voller B, St Clair Gibson A, Lomarev M, Kanchana S, Dambrosia J, Dang N, Hallett M. Long-latency afferent inhibition during selective finger movement. J Neurophysiol 2005; 94:1115-9. [PMID: 15843479 DOI: 10.1152/jn.00333.2005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Stimulation of a peripheral nerve of a hand at rest modulates excitability in the motor cortex and, in particular, leads to inhibition when applied at an interval of approximately 200 ms (long-latency afferent inhibition; LAI). Surround inhibition (SI) is the process that inhibits neighboring muscles not involved in a particular task. The neuronal mechanisms of SI are not known, and it is possible that LAI might contribute to it. Using transcranial magnetic stimulation (TMS) with and without movement of the index finger, the motor-evoked potentials (MEPs) were measured of two functionally distinct target muscles of the hand (abductor digiti minimi muscle = ADM, 1st dorsal interosseus muscle = FDI). Electrical stimulation was applied 180 ms before TMS to either the fifth finger or the index finger. Both homotopic and heterotopic finger stimulation resulted in LAI without movement. With index finger movement, motor output further decreased with homo- and heterotopic stimulation in the ADM. In the moving FDI, however, there was no change with either homo- or heterotopic stimulation. Additionally, in the unstimulated movement trials, LAI increased with the amount of unintentional co-activation that occurred despite attempts to maintain the ADM at rest. However, with finger stimulation added, there were almost no increased MEPs despite co-activation. These findings suggest that LAI increases during movement and can enhance SI.
Collapse
Affiliation(s)
- Bernhard Voller
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|