1
|
Kaleağasıoğlu F, Zaharieva MM, Konstantinov SM, Berger MR. Alkylphospholipids are Signal Transduction Modulators with Potential for Anticancer Therapy. Anticancer Agents Med Chem 2019; 19:66-91. [PMID: 30318001 DOI: 10.2174/1871520618666181012093056] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 03/19/2018] [Accepted: 06/12/2018] [Indexed: 12/26/2022]
Abstract
BACKGROUND Alkylphospholipids (APLs) are synthetically derived from cell membrane components, which they target and thus modify cellular signalling and cause diverse effects. This study reviews the mechanism of action of anticancer, antiprotozoal, antibacterial and antiviral activities of ALPs, as well as their clinical use. METHODS A literature search was used as the basis of this review. RESULTS ALPs target lipid rafts and alter phospholipase D and C signalling cascades, which in turn will modulate the PI3K/Akt/mTOR and RAS/RAF/MEK/ERK pathways. By feedback coupling, the SAPK/JNK signalling chain is also affected. These changes lead to a G2/M phase cell cycle arrest and subsequently induce programmed cell death. The available knowledge on inhibition of AKT phosphorylation, mTOR phosphorylation and Raf down-regulation renders ALPs as attractive candidates for modern medical treatment, which is based on individualized diagnosis and therapy. Corresponding to their unusual profile of activities, their side effects result from cholinomimetic activity mainly and focus on the gastrointestinal tract. These aspects together with their bone marrow sparing features render APCs well suited for modern combination therapy. Although the clinical success has been limited in cancer diseases so far, the use of miltefosine against leishmaniosis is leading the way to better understanding their optimized use. CONCLUSION Recent synthetic programs generate congeners with the increased therapeutic ratio, liposomal formulations, as well as diapeutic (or theranostic) derivatives with optimized properties. It is anticipated that these innovative modifications will pave the way for the further successful development of ALPs.
Collapse
Affiliation(s)
- Ferda Kaleağasıoğlu
- Toxicology and Chemotherapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Pharmacology, Faculty of Medicine, Near East University, Mersin 10, Turkey
| | - Maya M Zaharieva
- Toxicology and Chemotherapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Infectious Microbiology, The "Stephan Angeloff" Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Spiro M Konstantinov
- Toxicology and Chemotherapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University Sofia, Sofia, Bulgaria
| | - Martin R Berger
- Toxicology and Chemotherapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
2
|
Hou YM, Wang J, Zhang XZ. Lycium barbarum polysaccharide exhibits cardioprotection in an experimental model of ischemia-reperfusion damage. Mol Med Rep 2017; 15:2653-2658. [DOI: 10.3892/mmr.2017.6294] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 11/10/2016] [Indexed: 11/05/2022] Open
|
3
|
Alkyl ether lipids, ion channels and lipid raft reorganization in cancer therapy. Pharmacol Ther 2016; 165:114-31. [DOI: 10.1016/j.pharmthera.2016.06.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 05/26/2016] [Indexed: 12/21/2022]
|
4
|
Tang CH, Ku PC, Lin CY, Chen TH, Lee KH, Lee SH, Wang WH. Intra-Colonial Functional Differentiation-Related Modulation of the Cellular Membrane in a Pocilloporid Coral Seriatopora caliendrum. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2015; 17:633-643. [PMID: 26242752 DOI: 10.1007/s10126-015-9645-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 06/06/2015] [Indexed: 06/04/2023]
Abstract
Scleractinian corals have displayed phenotypic gradients of polyps within a single genotypic colony, and this has profound implications for their biology. The intrinsic polymorphism of membrane lipids and the molecular interactions involved allow cells to dynamically organize their membranes to have physicochemical properties appropriate for their physiological requirements. To gain insight into the accommodation of the cellular membrane during ontogenetic shifts, intra-colony differences in the glycerophosphocholine profiling of a pocilloporid coral, Seriatopora caliendrum, were characterized using a previously validated method. Specifically, several major polyunsaturated phosphatidylcholines showed higher levels in the distal tissue of coral branches. In contrast, the corresponding molecules with 1-2-degree less unsaturation and plasmanylcholines were expressed more highly in the proximal tissue. The lipid profiles of these two colonial positions also contrasted sharply with regard to the saturated, monounsaturated, and lyso-glycerophosphocholine ratios. Based on the biochemical and biophysical properties of these lipids, the associated modulation of cellular membrane properties could be related to the physiological requirements, including coral growth and aging, of the functionally differentiated polyps. In this study, the metabolic regulation of membrane lipids involved in the functional differentiation of polyps within a S. caliendrum colony was identified.
Collapse
Affiliation(s)
- Chuan-Ho Tang
- Department of Biology, National Museum of Marine Biology and Aquarium, 2 Houwan Rd., Checheng, Pingtung, 944, Taiwan,
| | | | | | | | | | | | | |
Collapse
|
5
|
Cellular membrane accommodation to thermal oscillations in the coral Seriatopora caliendrum. PLoS One 2014; 9:e105345. [PMID: 25140803 PMCID: PMC4139334 DOI: 10.1371/journal.pone.0105345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 07/21/2014] [Indexed: 11/19/2022] Open
Abstract
In the present study, the membrane lipid composition of corals from a region with tidally induced upwelling was investigated. The coral community is subject to strong temperature oscillations yet flourishes as a result of adaptation. Glycerophosphocholine profiling of the dominant pocilloporid coral, Seriatopora caliendrum, was performed using a validated method. The coral inhabiting the upwelling region shows a definite shift in the ratio of lipid molecular species, covering several subclasses. Mainly, the coral possesses a higher percentage of saturated, monounsaturated and polyunsaturated plasmanylcholines and a lower percentage of polyunsaturated phosphatidylcholines. Higher levels of lyso-plasmanylcholines containing saturated or monounsaturated fatty acid chains were also revealed in coral tissue at the distal portion of the branch. Based on the physicochemical properties of these lipids, we proposed mechanisms for handling cellular membrane perturbations, such as tension, induced by thermal oscillation to determine how coral cells are able to spontaneously maintain their physiological functions, in both molecular and physical terms. Interestingly, the biochemical and biophysical properties of these lipids also have beneficial effects on the resistance, maintenance, and growth of the corals. The results of this study suggest that lipid metabolic adjustment is a major factor in the adaption of S. caliendrum in upwelling regions.
Collapse
|
6
|
Tang CH, Lin CY, Lee SH, Wang WH. Cellular membrane accommodation of copper-induced oxidative conditions in the coral Seriatopora caliendrum. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 148:1-8. [PMID: 24440454 DOI: 10.1016/j.aquatox.2013.12.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 12/19/2013] [Accepted: 12/24/2013] [Indexed: 06/03/2023]
Abstract
Oxidative stress has been associated with copper-induced toxicity in scleractinian corals. To gain insight into the accommodation of the cellular membrane to oxidative conditions, a pocilloporid coral, Seriatopora caliendrum, was exposed to copper at distinct, environmentally relevant dose for various lengths of time. Glycerophosphocholine profiling of the response of the coral to copper exposure was characterized using a validated method. The results indicate that coral lipid metabolism is programmed to induce membrane alterations in response to the cellular deterioration that occurs during the copper exposure period. Decreasing lyso-phosphatidylcholines and exchanging polyunsaturated phosphatidylcholines for polyunsaturated plasmanylcholines were the initial actions taken to prevent membrane permeabilization. To relax/resist the resulting membrane strain caused by cell/organelle swelling, the coral cells inversely exchanged polyunsaturated plasmanylcholines for polyunsaturated phosphatidylcholines and further increased the levels of monounsaturated glycerophosphocholines. At the same time, the levels of saturated phosphatidylcholines were also increased to increase membrane rigidity and protect against oxidative attack. Interestingly, such alterations in lipid metabolism were also required for membrane fusion to repair the deteriorated membranes by repopulating them with proximal lipid reservoirs, similar to symbiosome membranes. Additionally, increasing saturated and monounsaturated plasmanylcholines and inhibiting the suppression of saturated lyso-phosphatidylcholines were shown to facilitate membrane fusion. Based on the biochemical and biophysical properties of these lipids, the chronic effects of copper, such as coral resistance and growth, can be logically interpreted to result from long-term perturbations in cellular membrane-related functions. In conclusion, the cells of S. caliendrum alter their lipid metabolism and sacrifice fitness to allow the membrane to accommodate copper-induced oxidative situations.
Collapse
Affiliation(s)
- Chuan-Ho Tang
- Institute of Marine Biodiversity and Evolutionary Biology, National Dong Hwa University, Pingtung, Taiwan, ROC; National Museum of Marine Biology and Aquarium, Pingtung, Taiwan, ROC.
| | - Ching-Yu Lin
- Institute of Environmental Health, National Taiwan University, Taipei City, Taiwan, ROC
| | - Shu-Hui Lee
- Center of General Education, National Kaohsiung Marine University, Kaohsiung, Taiwan, ROC
| | - Wei-Hsien Wang
- National Museum of Marine Biology and Aquarium, Pingtung, Taiwan, ROC; Department of Marine Biotechnology and Resources and Asia-Pacific Ocean Research Center, National Sun Yat-sen University, Kaohsiung, Taiwan, ROC
| |
Collapse
|
7
|
Song M, Huang L, Zhao G, Song Y. Beneficial effects of a polysaccharide from Salvia miltiorrhiza on myocardial ischemia–reperfusion injury in rats. Carbohydr Polym 2013; 98:1631-6. [DOI: 10.1016/j.carbpol.2013.08.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 08/10/2013] [Accepted: 08/13/2013] [Indexed: 11/16/2022]
|
8
|
Flasiński M, Broniatowski M, Wydro P, Hąc-Wydro K, Dynarowicz-Łątka P. Behavior of platelet activating factor in membrane-mimicking environment. Langmuir monolayer study complemented with grazing incidence X-ray diffraction and Brewster angle microscopy. J Phys Chem B 2012; 116:10842-55. [PMID: 22834697 DOI: 10.1021/jp302907e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
1-O-octadecyl-2-acetyl-sn-glycero-3-phosphocholine (PAF) belonging to the class of single-chained ether phospholipids is widely known from its essential biological activities. There is a growing body of evidence that some significant aspects of PAF actions are connected with its capability to direct intercalation into biomembranes' environment. Although this mechanism is of great importance in the perspective of understanding PAF implications in various physiological processes, in the literature, there is a lack of studies devoted to this subject. It is still unknown which is the exact influence of membrane composition, molecular organization, and its other properties on the PAF impact on cells and tissues. Unfortunately, the biological studies carried out on cell cultures do not provide satisfactory results, mainly because of the complexity of natural systems. In order to obtain insight into the behavior of PAF in a lipid environment at the molecular level, the application of appropriate model systems is required. Among them, Langmuir monolayers are very often applied as a simple but very efficient platform for studies of the interactions between membrane lipids. In the present paper, special attention is focused on the issue concerning the interactions between PAF and two representatives of membrane components occurring mainly in the outer leaflet of natural bilayers, namely, cholesterol and DPPC. The application of Langmuir monolayers enabled us to construct the effective model mimicking the exogenous incorporation of PAF into membrane environment. On the basis of the obtained results, a thorough discussion was carried out and the conclusions derived from the traditional thermodynamic analysis were confronted with microscopic analysis of surface domains and the GIXD results. The selection of experimental techniques enables us to obtain information regarding the miscibility and interactions in the binary mixed films as well as the molecular organization of film-forming molecules on water surface. The experiments revealed that the addition of the investigated single-chained ether phospholipid into both cholesterol and DPPC monolayers causes a considerable decrease of monolayer condensation. On the basis of thermodynamic analysis, it was found that PAF mixes and consequently interacts strongly with cholesterol, whereas its interactions with DPPC are thermodynamically unfavorable. Differences between the PAF influence on cholesterol and DPPC monolayer found its corroboration in the results obtained with the GIXD technique. Namely, the monolayer of DPPC can incorporate more PAF than the model membrane containing cholesterol. The obtained results indicate that short chained sn-2 ether phospholipid is able to modify model membrane properties in a concentration-dependent way.
Collapse
Affiliation(s)
- Michał Flasiński
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Kraków, Poland.
| | | | | | | | | |
Collapse
|
9
|
Kapoor V, Zaharieva MM, Das SN, Berger MR. Erufosine simultaneously induces apoptosis and autophagy by modulating the Akt-mTOR signaling pathway in oral squamous cell carcinoma. Cancer Lett 2011; 319:39-48. [PMID: 22202640 DOI: 10.1016/j.canlet.2011.12.032] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 12/16/2011] [Accepted: 12/16/2011] [Indexed: 11/27/2022]
Abstract
We investigated the anticancer activity of erufosine in oral squamous carcinoma cell lines in terms of cell proliferation, colony formation, induction of autophagy/apoptosis, cell cycle and mTOR signaling pathway. Erufosine showed dose-dependent cytotoxicity in all cell lines, it induced autophagy as well as apoptosis, G2 cell cycle arrest and modulation of cyclin D1 expression. Further erufosine downregulated the phosphorylation of major components of mTOR pathway, like p-Akt at Ser473 and Thr308 residues, p-Raptor, p-mTOR, p-PRAS40 and its downstream substrates p-p70S6K and p-4EBP1 in a dose-dependent manner. The pre-treatment of tumor cells with p-mTOR siRNA increased cytotoxic effects of erufosine comparable to cisplatin but higher than rapamycin.
Collapse
Affiliation(s)
- Vaishali Kapoor
- Toxicology and Chemotherapy Unit, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
10
|
Targeting the PI3K/Akt cell survival pathway to induce cell death of HIV-1 infected macrophages with alkylphospholipid compounds. PLoS One 2010; 5. [PMID: 20927348 PMCID: PMC2948033 DOI: 10.1371/journal.pone.0013121] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Accepted: 09/05/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND HIV-1 infected macrophages and microglia are long-lived viral reservoirs persistently producing viral progenies. HIV-1 infection extends the life span of macrophages by promoting the stress-induced activation of the PI3K/Akt cell survival pathway. Importantly, various cancers also display the PI3K/Akt activation for long-term cell survival and outgrowth, and Akt inhibitors have been extensively searched as anti-cancer agents. This led us to investigate whether Akt inhibitors could antagonize long-term survival and cytoprotective phenotype of HIV-1 infected macrophages. PRINCIPAL FINDINGS Here, we examined the effect of one such class of drugs, alkylphospholipids (ALPs), on cell death and Akt pathway signals in human macrophages and a human microglial cell line, CHME5, infected with HIV-1 BaL or transduced with HIV-1 vector, respectively. Our findings revealed that the ALPs, perifosine and edelfosine, specifically induced the death of HIV-1 infected primary human macrophages and CHME5 cells. Furthermore, these two compounds reduced phosphorylation of both Akt and GSK3β, a downstream substrate of Akt, in the transduced CHME5 cells. Additionally, we observed that perifosine effectively reduced viral production in HIV-1 infected primary human macrophages. These observations demonstrate that the ALP compounds tested are able to promote cell death in both HIV-1 infected macrophages and HIV-1 expressing CHME5 cells by inhibiting the action of the PI3K/Akt pathway, ultimately restricting viral production from the infected cells. SIGNIFICANCE This study suggests that Akt inhibitors, such as ALP compounds, may serve as potential anti-HIV-1 agents specifically targeting long-living HIV-1 macrophages and microglia reservoirs.
Collapse
|
11
|
Lu SP, Zhao PT. Chemical characterization of Lycium barbarum polysaccharides and their reducing myocardial injury in ischemia/reperfusion of rat heart. Int J Biol Macromol 2010; 47:681-4. [PMID: 20813126 DOI: 10.1016/j.ijbiomac.2010.08.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 08/19/2010] [Accepted: 08/24/2010] [Indexed: 10/19/2022]
Abstract
Polysaccharides were extracted from Lycium barbarum fruits in this work. Fourier transform infrared spectroscopy (FT-IR) and high-performance liquid chromatography (HPLC) have been employed to characterize this polysaccharides in the present study. The results of chemical composition indicated that the L. barbarum polysaccharides were composed of two kinds of monosaccharides, namely glucose and fructose in molar ratios of 1:2.1. The results indicated that the glucose and fructose were the predominant monosaccharides. IR spectrum of L. barbarum polysaccharides revealed a typical peaks of polysaccharides. The results still showed that L. barbarum polysaccharides significantly decreased the myocardium LD level, increased Na(+)-K(+)-ATPase and Ca(2+)-ATPase activities in heart ischemia reperfusion (IR) rats. In addition, L. barbarum polysaccharides still markedly decreased myocardium Bax positive rate and myocardial cell apoptosis and increased Bcl-2 positive rate in a dose-dependent manner. It may be concluded that administration of L. barbarum polysaccharides can prevented the development of cardiovascular diseases.
Collapse
Affiliation(s)
- Shao-Ping Lu
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, PR China.
| | | |
Collapse
|
12
|
Kushikata T, Fang J, Krueger JM. Platelet activating factor and its metabolite promote sleep in rabbits. Neurosci Lett 2006; 394:233-8. [PMID: 16263215 DOI: 10.1016/j.neulet.2005.10.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2005] [Revised: 10/07/2005] [Accepted: 10/12/2005] [Indexed: 11/21/2022]
Abstract
Platelet activating factor (PAF) is a key inflammatory mediator. PAF and its receptor are found in brain and PAF affects or is affected by the production of sleep promoting cytokines such as interleukin-1. PAF also interacts with several other sleep-regulatory substances such as nerve growth factor, brain-derived neurotrophic factor, neurotrophin-3, nitric oxide, prostaglandins, and prolactin. We thus hypothesized that PAF would increase sleep. In these experiments, each rabbit received an injection of 25 microl of 2% DMSO to obtain control values, and on a separate day received PAF or lyso-PAF, a metabolite of PAF. Ten, 100 and 500 nmol for each substance was injected intracerebroventricularly. Both PAF and lyso-PAF enhanced non-rapid eye movement (NREM) sleep but not REM sleep. Lyso-PAF, but not PAF, induced hyperthermia. Results are consistent with the hypothesis that the brain cytokine network is involved in physiological sleep regulation.
Collapse
Affiliation(s)
- Tetsuya Kushikata
- Department of Anesthesiology, University of Hirosaki School of Medicine, Hirosaki 036-8506, Japan
| | | | | |
Collapse
|
13
|
Handrick R, Rudner J, Müller I, Eibl H, Belka C, Jendrossek V. Bcl-2 mediated inhibition of erucylphosphocholine-induced apoptosis depends on its subcellular localisation. Biochem Pharmacol 2005; 70:837-50. [PMID: 16083863 DOI: 10.1016/j.bcp.2005.06.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2005] [Revised: 06/28/2005] [Accepted: 06/29/2005] [Indexed: 10/25/2022]
Abstract
The synthetic phospholipid derivative erucylphosphocholine (ErPC) is a potent inducer of apoptosis in human tumor cell lines. This membrane-targeted drug induces apoptosis independently from death receptor signaling through a mitochondrial pathway that is inhibited by over-expression of Bcl-2. Within the cell, Bcl-2 resides in membranes of mitochondria, endoplasmic reticulum (ER) and the nucleus. However, the importance of its subcellular localisation in distinct organelles for protection against apoptosis is not completely understood. To investigate the impact of Bcl-2 localised at defined subcellular compartments on its protective effects against ErPC-induced apoptosis, Bcl-2 expression was directed to the outer membrane of the mitochondria or the ER of Jurkat T Lymphoma cells, using Bcl-2 mutants with modified membrane anchors. The mitochondrial insertion sequence of ActA directed Bcl-2 to the mitochondria (Bcl-2/MT), the ER-specific sequence of cytochrome b5 to the ER (Bcl-2/ER). Additionally, Jurkat cells expressing wild-type Bcl-2 (Bcl-2/WT) or a transmembrane domain-lacking mutant (Bcl-2/DeltaTM) were employed. While restricted expression of Bcl-2 either at membranes of the mitochondria or the ER strongly interfered with ErPC-induced mitochondrial damage and apoptosis, cytosolic Bcl-2/DeltaTM exhibited only reduced protection. Thus, membrane localisation of Bcl-2 is a prerequisite for substantial protection against ErPC-induced apoptosis. For efficient long-term inhibition of ErPC-induced apoptosis Bcl-2 had to be present in the membranes of both compartments, the ER and the mitochondria. The finding that ER-targeted Bcl-2 interferes with ErPC-induced mitochondrial damage points to an involvement of the ER in apoptosis signaling upstream of the mitochondria and to a crosstalk between both compartments.
Collapse
Affiliation(s)
- R Handrick
- Department of Radiation Oncology, University of Tübingen, Hoppe-Seyler-Strasse 3, 72076 Tübingen, Germany
| | | | | | | | | | | |
Collapse
|