1
|
Yu K, Deng S, Wang H, Zhang Y, Chen X, Wang K, Hu R, Lian Z, Li N. Small interfering RNA expression inhibits avian infectious bronchitis virus replication and inflammatory response. Antivir Ther 2016; 21:469-479. [PMID: 26835751 DOI: 10.3851/imp3027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2016] [Indexed: 12/09/2022]
Abstract
BACKGROUND Avian infectious bronchitis virus (IBV) is a major cause of poor weight gain and mortality among chicks. METHODS A lentivirus vector was used to generate transgenic chickens expressing small interfering RNA (siRNA) targeting the M protein of IBV. Offspring of generation 0 (G0) were screened to identify G1 transgenic chickens (Tg). Monocytes from G1 Tg were stimulated with IBV in vitro. RESULTS Monocytes producing siRNA efficiently inhibit IBV replication. Expression of inflammatory cytokines, Mx protein and nitric oxide levels were lower in early IBV infection in Tg. In vivo experiments show that siRNA expression inhibits IBV replication, significantly decreases mortality and increases weight gain. Inflammatory responses and oxidative damage were significantly decreased, yielding minimal tissue injury. The inflammatory responses indicate that the cellular immune response is most effective during the initial stage, while the humoral immune response is more significant in later stages of infection. CONCLUSIONS Small interfering RNA expression inhibits avian IBV replication and inflammatory response.
Collapse
Affiliation(s)
- Kun Yu
- National Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China.,Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shoulong Deng
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Hai Wang
- Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yi Zhang
- Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xuehui Chen
- Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Kejun Wang
- Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Rui Hu
- Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhengxing Lian
- National Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China.,Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ning Li
- National Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
2
|
Sato C, Listar VG, Bonamin LV. Development of broiler chickens after treatment with thymulin 5cH: a zoo technical approach. HOMEOPATHY 2012; 101:68-73. [PMID: 22226317 DOI: 10.1016/j.homp.2011.09.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2009] [Revised: 07/28/2011] [Accepted: 09/26/2011] [Indexed: 01/22/2023]
Abstract
Modulation of immune response due to thymulin 5cH has been previously observed. The aim of the present study is to evaluate the development of broiler chickens treated with thymulin 5cH by conventional zoo technical indices, phytohemaglutinin induced inflammation test and histomorphometric analysis of lymphoid organs (thymus, Fabricius bursa and spleen). Animals were divided in two groups: (a) test: birds with free access to thymulin 5cH diluted into the drink water and (b) control: birds with free access to water only, from the 1st to the 42nd day of life. All experimental procedures were done in blind. The results show that thymulin 5cH treated group had increased productivity index compared to control (391.45 versus 261.93) associated with higher viability in the 7th week (p = 0.013), and a possible shunt to B lymphocyte activity. The data suggest that thymulin 5cH could be a viable method to improve productivity in poultry production due to its immune modulation properties.
Collapse
Affiliation(s)
- César Sato
- Centro de Pesquisa, Universidade Paulista, Rua Dr Bacelar, 1212. 4° andar, 04026-002 São Paulo, São Paulo, Brazil.
| | | | | |
Collapse
|
3
|
Rautenschlein S, Aung YH, Haase C. Local and systemic immune responses following infection of broiler-type chickens with avian Metapneumovirus subtypes A and B. Vet Immunol Immunopathol 2010; 140:10-22. [PMID: 21183227 DOI: 10.1016/j.vetimm.2010.11.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Revised: 11/03/2010] [Accepted: 11/08/2010] [Indexed: 12/12/2022]
Abstract
Infections with avian Metapneumovirus (aMPV) are often associated with swollen head syndrome in meat type chickens. Previous studies in turkeys have demonstrated that local humoral and cell-mediated immunity plays a role in aMPV-infection. Previous experimental and field observations indicated that the susceptibility of broilers and their immune reactions to aMPV may differ from turkeys. In the presented study local and systemic immune reactions of broilers were investigated after experimental infections with subtypes A and B aMPV of turkey origin. Both virus subtypes induced a mild respiratory disease. The recovery from respiratory signs correlated with the induction of local and systemic aMPV virus-neutralizing antibodies, which began to rise at 6 days post infection (dpi), when the peak of clinical signs was observed. In a different manner to the virus neutralizing (VN) and IgG-ELISA serum antibody titres, which showed high levels until the end of the experiments between 24 and 28 dpi, the specific IgA-ELISA and VN-antibody levels in tracheal washes decreased by 10 and 14 dpi, respectively, which may explain the recurring aMPV-infections in the field. Ex vivo cultured spleen cells from aMPV-infected broilers released at 3 and 6 dpi higher levels of IFN-γ after stimulation with Concanavalin A as compared to virus-free birds. In agreement with studies in turkeys, aMPV-infected broilers showed a clear CD4+ T cell accumulation in the Harderian gland (HG) at 6 dpi (P<0.05). In contrast to other investigations in turkeys aMPV-infected broilers showed an increase in the number of CD8alpha+ cells at 6 dpi compared to virus-free birds (P<0.05). The numbers of local B cells in the Harderian gland were not affected by the infection. Both aMPV A and B induced up-regulation of interferon (IFN)-γ mRNA-expression in the nasal turbinates, while in the Harderian gland only aMPV-A induced enhanced IFN-γ expression at 3 dpi. The differences in systemic and local T cell and possibly natural killer cell activity in the HG between turkeys and chickens may explain the differences in aMPV-pathogenesis between these two species.
Collapse
Affiliation(s)
- Silke Rautenschlein
- Clinic for Poultry, University of Veterinary Medicine Hannover, Hannover, Germany.
| | | | | |
Collapse
|
4
|
Borghetti P, Saleri R, Mocchegiani E, Corradi A, Martelli P. Infection, immunity and the neuroendocrine response. Vet Immunol Immunopathol 2009; 130:141-62. [PMID: 19261335 PMCID: PMC7112574 DOI: 10.1016/j.vetimm.2009.01.013] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Revised: 01/17/2009] [Accepted: 01/27/2009] [Indexed: 12/11/2022]
Abstract
The Central Nervous (CNS) and Immune Systems (IS) are the two major adaptive systems which respond rapidly to numerous challenges that are able to compromise health. The defensive response strictly linking innate to acquired immunity, works continuously to limit pathogen invasion and damage. The efficiency of the innate response is crucial for survival and for an optimum priming of acquired immunity. During infection, the immune response is modulated by an integrated neuro-immune network which potentiates innate immunity, controls potential harmful effects and also addresses metabolic and nutritional modifications supporting immune function. In the last decade much knowledge has been gained on the molecular signals that orchestrate this integrated adaptive response, with focus on the systemic mediators which have a crucial role in driving and controlling an efficient protective response. These mediators are also able to signal alterations and control pathway dysfunctions which may be involved in the persistence and/or overexpression of inflammation that may lead to tissue damage and to a negative metabolic impact, causing retarded growth. This review aims to describe some important signalling pathways which drive bidirectional communication between the Immune and Nervous Systems during infection. Particular emphasis is placed on pro-inflammatory cytokines, immunomodulator hormones such as Glucocorticoids (GCs), Growth hormone (GH), Insulin-like Growth Factor-1 (IGF-1), and Leptin, as well as nutritional factors such as Zinc (Zn). Finally, the review includes up-to-date information on this neuroimmune cross-talk in domestic animals. Data in domestic animal species are still limited, but there are several exciting areas of research, like the potential interaction pathways between mediators (i.e. cytokine-HPA regulation, IL-6-GCS-Zn, cytokines-GH/IGF-1, IL-6-GH-Leptin and thymus activity) that are or could be promising topics of future research in veterinary medicine.
Collapse
|
5
|
Sarson AJ, Abdul-Careem MF, Read LR, Brisbin JT, Sharif S. Expression of cytotoxicity-associated genes in Marek's disease virus-infected chickens. Viral Immunol 2008; 21:267-72. [PMID: 18570592 DOI: 10.1089/vim.2007.0094] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cytotoxic host responses to Marek's disease virus (MDV) have been attributed to both natural killer (NK) cells and cytotoxic T lymphocytes (CTLs). However, the mechanisms of cell lysis initiated by these cytotoxic responses during MDV infection are not well defined. Therefore, the current study was aimed at elucidating the molecular mechanisms of host cytotoxic responses to MDV infection by investigating the expression of genes in the cell lysis pathway involving granzyme A. Genes encoding cytolytic proteins, NK lysin, and granzyme A were upregulated during early stages of infection, whereas the genes encoding major histocompatibility complex (MHC) class I and the DNA repair and apoptosis protein, poly(ADP-ribose) polymerase (PARP), were downregulated. These findings shed more light on the mechanisms of host response to MDV infection in chickens.
Collapse
Affiliation(s)
- Aimie J Sarson
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
| | | | | | | | | |
Collapse
|
6
|
Henriques-Coelho T, Oliveira SM, Moura RS, Roncon-Albuquerque R, Neves AL, Santos M, Nogueira-Silva C, La Fuente Carvalho F, Brandão-Nogueira A, Correia-Pinto J, Leite-Moreira AF. Thymulin inhibits monocrotaline-induced pulmonary hypertension modulating interleukin-6 expression and suppressing p38 pathway. Endocrinology 2008; 149:4367-73. [PMID: 18511508 DOI: 10.1210/en.2008-0018] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The pathogenesis of pulmonary hypertension (PH) includes an inflammatory response. Thymulin, a zinc-dependent thymic hormone, has important immunobiological effects by inhibiting various proinflammatory cytokines and chemokines. We investigated morphological and hemodynamic effects of thymulin administration in a rat model of monocrotaline (MCT)-induced PH, as well as the pattern of proinflammatory cytokine gene expression and the intracellular pathways involved. Adult Wistar rats received an injection of MCT (60 mg/kg, sc) or an equal volume of saline. One day after, the animals randomly received during 3 wk an injection of saline, vehicle (zinc plus carboxymethyl cellulose), or thymulin (100 ng/kg, sc, daily). At d 23-25, the animals were anesthetized for hemodynamic recordings, whereas heart and lungs were collected for morphometric and molecular analysis. Thymulin prevented morphological, hemodynamic, and inflammatory cardiopulmonary profile characteristic of MCT-induced PH, whereas part of these effects were also observed in MCT-treated animals injected with the thymulin's vehicle containing zinc. The pulmonary thymulin effect was likely mediated through suppression of p38 pathway.
Collapse
|
7
|
Vásquez GM, Ragland WL. Avian thymic hormone treatment of peripheral blood mononuclear cells from young chicks stimulates acute graft-versus-host reaction in chicken embryos. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2005; 29:663-668. [PMID: 15784296 DOI: 10.1016/j.dci.2004.11.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2004] [Accepted: 11/08/2004] [Indexed: 05/24/2023]
Abstract
Avian thymic hormone (ATH) is a parvalbumin produced by epithelial cells in the thymic cortex of chickens and circulates in the blood on a 5-day cycle. It stimulates precocious development of cell-mediated immunity. The effect of partially purified extracts of thymus (TE) and purified ATH were tested for their effect on the acute graft-versus-host reaction (GVHR). Treatment of chicks for their first 3-days of life did not enhance the acute GVHR produced by their PBMC in 14-day-old embryos. PBMC from 3-day-old chicks were treated in vitro with TE, ATH, thymosin fraction 5 or thymosin alpha1 for 2 h and injected into 14-day-old embryos. Bone marrow cells and thymic lymphocytes were treated with TE. Only PBMC treated with TE or ATH produced an enhanced acute GVHR. Because ATH targets gammadelta T cells, the data implicate participation of donor gammadelta T cells in the acute GVHR.
Collapse
|