1
|
Belyakov EA, Mikhaylova YV, Machs EM, Zhurbenko PM, Rodionov AV. Hybridization and diversity of aquatic macrophyte Sparganium L. (Typhaceae) as revealed by high-throughput nrDNA sequencing. Sci Rep 2022; 12:21610. [PMID: 36517537 PMCID: PMC9750990 DOI: 10.1038/s41598-022-25954-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022] Open
Abstract
Sparganium is an emergent aquatic macrophyte widely spread in temperate and subtropical zones. Taxa of this genus feature high phenotypic plasticity and can produce interspecific hybrids. By means of high-throughput sequencing of the internal transcribed spacer (ITS1) of 35S rDNA, the status of 15 Eurasian Sparganium species and subspecies was clarified and the role of hybridization events in the recent evolution of the genus was investigated. It has been shown that a number of species such as S. angustifolium, S. fallax and S. subglobosum have homogenized rDNA represented by one major ribotype. The rDNA of other taxa is represented by two or more major ribotypes. Species with high rDNA heterogeneity are apparently of hybrid origin. Based on the differences in rDNA patterns, intraspecific diversity was identified in S. probatovae and S. emersum. Thus, we have concluded that Sparganium has extensive interspecific hybridization at the subgenus level, and there may also be occasional hybridization between species from different subgenera.
Collapse
Affiliation(s)
- Evgeny A. Belyakov
- grid.464570.40000 0001 1092 3616Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Yaroslavl Region, Nekouz District, 109, Borok, Russia 152742 ,grid.446199.70000 0000 8543 3323Cherepovets State University, Lunacharsky Ave., 5, Cherepovets, Russia 162600
| | - Yulia V. Mikhaylova
- grid.465298.4Komarov Botanical Institute, Russian Academy of Sciences, Prof. Popova St., 2, St. Petersburg, Russia 199376
| | - Eduard M. Machs
- grid.465298.4Komarov Botanical Institute, Russian Academy of Sciences, Prof. Popova St., 2, St. Petersburg, Russia 199376
| | - Peter M. Zhurbenko
- grid.465298.4Komarov Botanical Institute, Russian Academy of Sciences, Prof. Popova St., 2, St. Petersburg, Russia 199376 ,grid.15447.330000 0001 2289 6897St. Petersburg State University, Universitetskaya Embankment, 7-9, St. Petersburg, Russia 199034
| | - Aleksandr V. Rodionov
- grid.465298.4Komarov Botanical Institute, Russian Academy of Sciences, Prof. Popova St., 2, St. Petersburg, Russia 199376 ,grid.15447.330000 0001 2289 6897St. Petersburg State University, Universitetskaya Embankment, 7-9, St. Petersburg, Russia 199034
| |
Collapse
|
2
|
Pinto D, da Fonseca RR. Evolution of the extracytoplasmic function σ factor protein family. NAR Genom Bioinform 2020; 2:lqz026. [PMID: 33575573 PMCID: PMC7671368 DOI: 10.1093/nargab/lqz026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/04/2019] [Accepted: 12/19/2019] [Indexed: 12/18/2022] Open
Abstract
Understanding transcription has been a central goal of the scientific community for decades. However, much is still unknown, especially concerning how it is regulated. In bacteria, a single DNA-directed RNA-polymerase performs the whole of transcription. It contains multiple subunits, among which the σ factor that confers promoter specificity. Besides the housekeeping σ factor, bacteria encode several alternative σ factors. The most abundant and diverse family of alternative σ factors, the extracytoplasmic function (ECF) family, regulates transcription of genes associated with stressful scenarios, making them key elements of adaptation to specific environmental changes. Despite this, the evolutionary history of ECF σ factors has never been investigated. Here, we report on our analysis of thousands of members of this family. We show that single events are in the origin of alternative modes of regulation of ECF σ factor activity that require partner proteins, but that multiple events resulted in acquisition of regulatory extensions. Moreover, in Bacteroidetes there is a recent duplication of an ecologically relevant gene cluster that includes an ECF σ factor, whereas in Planctomycetes duplication generates distinct C-terminal extensions after fortuitous insertion of the duplicated σ factor. At last, we also demonstrate horizontal transfer of ECF σ factors between soil bacteria.
Collapse
Affiliation(s)
- Daniela Pinto
- Technische Universität Dresden, Institute of Microbiology, Zellescher Weg 20b, 01217 Dresden, Germany
| | - Rute R da Fonseca
- Center for Macroecology, Evolution and Climate (CMEC), GLOBE Institute, University of Copenhagen, 1350 Copenhagen K, Denmark
| |
Collapse
|
3
|
Reams AB, Kofoid E, Kugelberg E, Roth JR. Multiple pathways of duplication formation with and without recombination (RecA) in Salmonella enterica. Genetics 2012; 192:397-415. [PMID: 22865732 PMCID: PMC3454872 DOI: 10.1534/genetics.112.142570] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Accepted: 07/24/2012] [Indexed: 12/11/2022] Open
Abstract
Duplications are often attributed to "unequal recombination" between separated, directly repeated sequence elements (>100 bp), events that leave a recombinant element at the duplication junction. However, in the bacterial chromosome, duplications form at high rates (10(-3)-10(-5)/cell/division) even without recombination (RecA). Here we describe 1800 spontaneous lac duplications trapped nonselectively on the low-copy F'(128) plasmid, where lac is flanked by direct repeats of the transposable element IS3 (1258 bp) and by numerous quasipalindromic REP elements (30 bp). Duplications form at a high rate (10(-4)/cell/division) that is reduced only about 11-fold in the absence of RecA. With and without RecA, most duplications arise by recombination between IS3 elements (97%). Formation of these duplications is stimulated by IS3 transposase (Tnp) and plasmid transfer functions (TraI). Three duplication pathways are proposed. First, plasmid dimers form at a high rate stimulated by RecA and are then modified by deletions between IS3 elements (resolution) that leave a monomeric plasmid with an IS3-flanked lac duplication. Second, without RecA, duplications occur by single-strand annealing of DNA ends generated in different sister chromosomes after transposase nicks DNA near participating IS3 elements. The absence of RecA may stimulate annealing by allowing chromosome breaks to persist. Third, a minority of lac duplications (3%) have short (0-36 bp) junction sequences (SJ), some of which are located within REP elements. These duplication types form without RecA, Tnp, or Tra by a pathway in which the palindromic junctions of a tandem inversion duplication (TID) may stimulate deletions that leave the final duplication.
Collapse
Affiliation(s)
- Andrew B. Reams
- Department of Microbiology, University of California, Davis, California 95616
| | - Eric Kofoid
- Department of Microbiology, University of California, Davis, California 95616
| | - Elisabeth Kugelberg
- Department of Microbiology, University of California, Davis, California 95616
| | - John R. Roth
- Department of Microbiology, University of California, Davis, California 95616
| |
Collapse
|
4
|
|
5
|
Slack A, Thornton PC, Magner DB, Rosenberg SM, Hastings PJ. On the mechanism of gene amplification induced under stress in Escherichia coli. PLoS Genet 2006; 2:e48. [PMID: 16604155 PMCID: PMC1428787 DOI: 10.1371/journal.pgen.0020048] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2005] [Accepted: 02/14/2006] [Indexed: 12/02/2022] Open
Abstract
Gene amplification is a collection of processes whereby a DNA segment is reiterated to multiple copies per genome. It is important in carcinogenesis and resistance to chemotherapeutic agents, and can underlie adaptive evolution via increased expression of an amplified gene, evolution of new gene functions, and genome evolution. Though first described in the model organism Escherichia coli in the early 1960s, only scant information on the mechanism(s) of amplification in this system has been obtained, and many models for mechanism(s) were possible. More recently, some gene amplifications in E. coli were shown to be stress-inducible and to confer a selective advantage to cells under stress (adaptive amplifications), potentially accelerating evolution specifically when cells are poorly adapted to their environment. We focus on stress-induced amplification in E. coli and report several findings that indicate a novel molecular mechanism, and we suggest that most amplifications might be stress-induced, not spontaneous. First, as often hypothesized, but not shown previously, certain proteins used for DNA double-strand-break repair and homologous recombination are required for amplification. Second, in contrast with previous models in which homologous recombination between repeated sequences caused duplications that lead to amplification, the amplified DNAs are present in situ as tandem, direct repeats of 7–32 kilobases bordered by only 4 to 15 base pairs of G-rich homology, indicating an initial non-homologous recombination event. Sequences at the rearrangement junctions suggest nonhomologous recombination mechanisms that occur via template switching during DNA replication, but unlike previously described template switching events, these must occur over long distances. Third, we provide evidence that 3′-single-strand DNA ends are intermediates in the process, supporting a template-switching mechanism. Fourth, we provide evidence that lagging-strand templates are involved. Finally, we propose a novel, long-distance template-switching model for the mechanism of adaptive amplification that suggests how stress induces the amplifications. We outline its possible applicability to amplification in humans and other organisms and circumstances. A common change in genomes of all organisms is the reiteration of segments of DNA to multiple copies. DNA amplification can allow rapid evolution by changing the amounts of proteins made, and is instrumental in cancer formation, variation between human genomes, and antibiotic resistance and pathogenicity in microbes. Yet little is known about how amplification occurs, even in simple organisms. DNA amplification can occur in response to stress. In Escherichia coli bacteria, starvation stress provokes amplifications that can allow E. coli ultimately to adjust to the starvation condition. This study elucidates several aspects of the mechanism underlying these stress-provoked amplifications. The data suggest a new model in which DNA replication stalls during starvation, and the end of the new DNA jumps to another stalled replication fork to create a duplicated DNA segment. The duplication can then amplify to many copies by genetic recombination. This model, if correct, can explain how stress provokes these genome rearrangements—by replication stalling. The general model may be useful for other long-distance genome rearrangements in many organisms. Stress can cause rapid and profound changes in the genome, some of which can give cells an advantage—this paper helps to explain how.
Collapse
Affiliation(s)
- Andrew Slack
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - P. C Thornton
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Daniel B Magner
- Interdepartmental Program in Cell and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Susan M Rosenberg
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Interdepartmental Program in Cell and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - P. J Hastings
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
6
|
|
7
|
Hastings PJ, Slack A, Petrosino JF, Rosenberg SM. Adaptive amplification and point mutation are independent mechanisms: evidence for various stress-inducible mutation mechanisms. PLoS Biol 2004; 2:e399. [PMID: 15550983 PMCID: PMC529313 DOI: 10.1371/journal.pbio.0020399] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2003] [Accepted: 09/20/2004] [Indexed: 11/22/2022] Open
Abstract
“Adaptive mutation” denotes a collection of processes in which cells respond to growth-limiting environments by producing compensatory mutants that grow well, apparently violating fundamental principles of evolution. In a well-studied model, starvation of stationary-phase lac− Escherichia coli cells on lactose medium induces Lac+ revertants at higher frequencies than predicted by usual mutation models. These revertants carry either a compensatory frameshift mutation or a greater than 20-fold amplification of the leaky lac allele. A crucial distinction between alternative hypotheses for the mechanisms of adaptive mutation hinges on whether these amplification and frameshift mutation events are distinct, or whether amplification is a molecular intermediate, producing an intermediate cell type, in colonies on a pathway to frameshift mutation. The latter model allows the evolutionarily conservative idea of increased mutations (per cell) without increased mutation rate (by virtue of extra gene copies per cell), whereas the former requires an increase in mutation rate, potentially accelerating evolution. To resolve these models, we probed early events leading to rare adaptive mutations and report several results that show that amplification is not the precursor to frameshift mutation but rather is an independent adaptive outcome. (i) Using new high-resolution selection methods and stringent analysis of all cells in very young (micro)colonies (500–10,000 cells), we find that most mutant colonies contain no detectable lac-amplified cells, in contrast with previous reports. (ii) Analysis of nascent colonies, as young as the two-cell stage, revealed mutant Lac+ cells with no lac-amplified cells present. (iii) Stringent colony-fate experiments show that microcolonies of lac-amplified cells grow to form visible colonies of lac-amplified, not mutant, cells. (iv) Mutant cells do not overgrow lac-amplified cells in microcolonies fast enough to mask the lac-amplified cells. (v) lac-amplified cells are not SOS-induced, as was proposed to explain elevated mutation in a sequential model. (vi) Amplification, and not frameshift mutation, requires DNA polymerase I, demonstrating that mutation is separable from amplification, and also illuminating the amplification mechanism. We conclude that amplification and mutation are independent outcomes of adaptive genetic change. We suggest that the availability of alternative pathways for genetic/evolutionary adaptation and clonal expansion under stress may be exploited during processes ranging from the evolution of drug resistance to cancer progression. Cells can respond to stress by apparently increasing their mutation rate. This study provides evidence that there is more than one pathway by which cells achieve such a response
Collapse
Affiliation(s)
- P J Hastings
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.
| | | | | | | |
Collapse
|
8
|
Lombardo MJ, Aponyi I, Rosenberg SM. General stress response regulator RpoS in adaptive mutation and amplification in Escherichia coli. Genetics 2004; 166:669-80. [PMID: 15020458 PMCID: PMC1470735 DOI: 10.1534/genetics.166.2.669] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Microbial cells under growth-limiting stress can generate mutations by mechanisms distinct from those in rapidly growing cells. These mechanisms might be specific stress responses that increase mutation rates, potentially altering rates of evolution, or might reflect non-stress-specific processes in rare growing cells. In an Escherichia coli model system, both frameshift reversion mutations and gene amplifications occur as apparent starvation-induced mutations. Whereas frameshift reversion ("point mutation") requires recombination proteins, the SOS response, and error-prone DNA polymerase IV (DinB), amplification requires neither SOS nor pol IV. We report that both point mutation and amplification require the stationary-phase and general stress response transcription factor RpoS (sigmaS). Growth-dependent mutation does not. Alternative interpretations are excluded. The results imply, first, that point mutation and amplification are stress responses that occur in differentiated stationary-phase (not rare growing) cells and, second, that transient genetic instability, producing both point mutation and genome rearrangement, may be a previously unrecognized component of the RpoS-dependent general stress response.
Collapse
Affiliation(s)
- Mary-Jane Lombardo
- Department of Molecular Genetics, Baylor College of Medicine, Houston, TX 77030-3411, USA
| | | | | |
Collapse
|
9
|
Lee AM, Singleton SF. Inhibition of the Escherichia coli RecA protein: zinc(II), copper(II) and mercury(II) trap RecA as inactive aggregates. J Inorg Biochem 2004; 98:1981-6. [PMID: 15522426 DOI: 10.1016/j.jinorgbio.2004.08.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2004] [Revised: 08/24/2004] [Accepted: 08/27/2004] [Indexed: 01/08/2023]
Abstract
In bacteria, the RecA protein plays important roles in a number of DNA recombination and repair processes, including homologous recombination, SOS induction and recombinational DNA repair. We have explored the idea that the Escherichia coli RecA protein's functions could be controlled by small molecules. We investigated the 2:1 complex of zinc(II) with 1,4-dithio-l-threitol (l-DTT) that inhibits the E. coli rho transcription terminator, which is a hexameric ATP motor protein and is structurally homologous to RecA. We found that both the complex and ZnCl(2) inhibit the single-stranded DNA-dependent ATPase activity of RecA at sub-millimolar concentrations. Investigation of a variety of metal dications (0.4 mM final concentration) determined that zinc(II), copper(II) and mercury(II) all induce the precipitation of RecA, while the dichloride salts of calcium, manganese, barium, cobalt, and nickel do not. The inhibition of RecA activity by Zn(II), Cu(II) and Hg(II) results from the metal-dependent initiation of RecA aggregation. These observations may have implications for the design of biophysical experiments requiring solid-phase RecA protein, for a more complete understanding of metal toxicities, and for the design of metal-chelate inhibitors of prokaryotic DNA repair.
Collapse
Affiliation(s)
- Andrew M Lee
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX, USA
| | | |
Collapse
|
10
|
Rosenberg SM, Hastings PJ. Adaptive point mutation and adaptive amplification pathways in the Escherichia coli Lac system: stress responses producing genetic change. J Bacteriol 2004; 186:4838-43. [PMID: 15262914 PMCID: PMC451650 DOI: 10.1128/jb.186.15.4838-4843.2004] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Susan M Rosenberg
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, BCM-S809A Mail Stop BCM225, Houston, TX 77030-3411, USA.
| | | |
Collapse
|
11
|
Mertens F, Panagopoulos I, Jonson T, Gisselsson D, Isaksson M, Domanski HA, Mandahl N. Retained heterodisomy for chromosome 12 in atypical lipomatous tumors: implications for ring chromosome formation. Cytogenet Genome Res 2004; 106:33-8. [PMID: 15218238 DOI: 10.1159/000078557] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2004] [Accepted: 02/04/2004] [Indexed: 11/19/2022] Open
Abstract
Atypical lipomatous tumor (ALT) is an intermediate malignant mesenchymal tumor that is characterized by supernumerary ring chromosomes and/or giant rod-shaped marker chromosomes (RGMC). Fluorescence in situ hybridization (FISH) and molecular genetic analyses have disclosed that the RGMCs always contain amplified sequences from the long arm of chromosome 12. Typically, RGMCs are the sole clonal changes and so far no deletions or other morphologic aberrations of the two normal-appearing chromosomes 12 that invariably are present have been detected. The mechanisms behind the formation of the RGMCs are unknown, but it could be hypothesized that RGMC formation is preceded by trisomy 12 or, alternatively, that ring formation of one chromosome 12 is followed by duplication of the remaining homolog. The latter scenario would always result in isodisomy for the two normal-appearing chromosomes 12, whereas the former would yield isodisomy in one-third of the cases. In order to investigate these possible mechanisms behind ring formation, we studied polymorphic loci on chromosome 12 in 14 cases of ALT showing one or more supernumerary ring chromosomes and few or no other clonal aberrations at cytogenetic analysis. The molecular genetic analyses showed that the tumor cells always retained both parental copies of chromosome 12, thus refuting the trisomy 12 and duplication hypotheses.
Collapse
Affiliation(s)
- F Mertens
- Department of Clinical Genetics, Lund University Hospital, Lund, Sweden.
| | | | | | | | | | | | | |
Collapse
|
12
|
Hersh MN, Ponder RG, Hastings PJ, Rosenberg SM. Adaptive mutation and amplification in Escherichia coli: two pathways of genome adaptation under stress. Res Microbiol 2004; 155:352-9. [PMID: 15207867 DOI: 10.1016/j.resmic.2004.01.020] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2003] [Accepted: 01/20/2004] [Indexed: 10/26/2022]
Abstract
The neo-Darwinists suggested that evolution is constant and gradual, and thus that genetic changes that drive evolution should be too. However, more recent understanding of phenomena called adaptive mutation in microbes indicates that mutation rates can be elevated in response to stress, producing beneficial and other mutations. We review evidence that, in Escherichia coli, two separate mechanisms of stress-induced genetic change occur that revert a lac frameshift allele allowing growth on lactose medium. First, compensatory frameshift ("point") mutations occur by a mechanism that includes DNA double-strand breaks and (we have suggested) their error-prone repair. Point mutation requires induction of the RpoS-dependent general stress response, and the SOS DNA damage response leading to upregulation of the error-prone DNA polymerase DinB (Pol IV), and occurs during a transient limitation of post-replicative mismatch repair activity. A second mechanism, adaptive amplification, entails amplification of the leaky lac allele to 20-50 tandem repeats. These provide sufficient beta-galactosidase activity for growth, thereby apparently deflecting cells from the point mutation pathway. Unlike point mutation, amplification neither occurs in hypermutating cells nor requires SOS or DinB, but like point mutation, amplification requires the RpoS-dependent stress response. Similar processes are being found in other bacterial systems and yeast. Stress-induced genetic changes may underlie much of microbial evolution, pathogenesis and antibiotic resistance, and also cancer formation, progression and drug resistance.
Collapse
Affiliation(s)
- Megan N Hersh
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Rm S809, Mail Stop 225, Houston, TX 77030-3411, USA
| | | | | | | |
Collapse
|
13
|
Kivisaar M. Stationary phase mutagenesis: mechanisms that accelerate adaptation of microbial populations under environmental stress. Environ Microbiol 2004; 5:814-27. [PMID: 14510835 DOI: 10.1046/j.1462-2920.2003.00488.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Microorganisms are exposed to constantly changing environmental conditions. In a growth-restricting environment (e.g. during starvation), mutants arise that are able to take over the population by a process known as stationary phase mutation. Genetic adaptation of a microbial population under environmental stress involves mechanisms that lead to an elevated mutation rate. Under stressful conditions, DNA synthesis may become more erroneous because of the induction of error-prone DNA polymerases, resulting in a situation in which DNA repair systems are unable to cope with increasing amounts of DNA lesions. Transposition may also increase genetic variation. One may ask whether the rate of mutation under stressful conditions is elevated as a result of malfunctioning of systems responsible for accuracy or are there specific mechanisms that regulate the rate of mutations under stress. Evidence for the presence of mutagenic pathways that have probably been evolved to control the mutation rate in a cell will be discussed.
Collapse
Affiliation(s)
- Maia Kivisaar
- Department of Genetics, Institute of Molecular and Cell Biology, Tartu University and Estonian Biocentre, 51010 Tartu, Estonia.
| |
Collapse
|
14
|
Lombardo MJ, Aponyi I, Rosenberg SM. General Stress Response Regulator RpoS in Adaptive Mutation and Amplification in Escherichia coli. Genetics 2004. [DOI: 10.1093/genetics/166.2.669] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abstract
Microbial cells under growth-limiting stress can generate mutations by mechanisms distinct from those in rapidly growing cells. These mechanisms might be specific stress responses that increase mutation rates, potentially altering rates of evolution, or might reflect non-stress-specific processes in rare growing cells. In an Escherichia coli model system, both frameshift reversion mutations and gene amplifications occur as apparent starvation-induced mutations. Whereas frameshift reversion (“point mutation”) requires recombination proteins, the SOS response, and error-prone DNA polymerase IV (DinB), amplification requires neither SOS nor pol IV. We report that both point mutation and amplification require the stationary-phase and general stress response transcription factor RpoS (σS). Growth-dependent mutation does not. Alternative interpretations are excluded. The results imply, first, that point mutation and amplification are stress responses that occur in differentiated stationary-phase (not rare growing) cells and, second, that transient genetic instability, producing both point mutation and genome rearrangement, may be a previously unrecognized component of the RpoS-dependent general stress response.
Collapse
Affiliation(s)
- Mary-Jane Lombardo
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030-3411
| | - Ildiko Aponyi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030-3411
| | - Susan M Rosenberg
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030-3411
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030-3411
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030-3411
| |
Collapse
|