1
|
Forte P, Cattaneo J, Cardillo Piccolino F, Arrigo A, Corazza P, Musetti D, Rosa R, Traverso CE, Fontana V, Lupidi M, Eandi CM, Nicolò M. Influence of scleral thickness on photodynamic therapy outcomes in central serous chorioretinopathy. Acta Ophthalmol 2025; 103:e165-e175. [PMID: 39428607 PMCID: PMC11986406 DOI: 10.1111/aos.16779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/03/2024] [Indexed: 10/22/2024]
Abstract
PURPOSE To test the prognostic role of anterior scleral substantia propria (ASSP) thickness in predicting the 3-month response after half-dose photodynamic therapy (PDT) in central serous chorioretinopathy (CSCR) and to assess its clinical relevance of ASSP in different CSCR phenotypes. METHODS A prospective, exploratory, multi-centre cohort study conducted at IRCCS San Martino Hospital (Genoa, Italy) and Jules-Gonin Eye Hospital (Lausanne, Switzerland). Demographic and clinical data, and optical coherence tomography (OCT) were collected at baseline and 3 months after PDT. Based on OCT images, we categorized CSCR phenotypes and collected clinically relevant imaging metrics. ASSP thickness was obtained from four different measurements using anterior segment (AS) OCT. Multivariable regression models were performed to evaluate the distribution of ASSP thicknesses among different CSCR phenotypes and to test the prognostic role of ASSP thickness in discriminating between PDT responders (complete subretinal fluid reabsorption) and partial responders. RESULTS The study cohort comprised 109 Caucasian patients (82 males, 75.2%) with a total of 142 eyes: 84 eyes simple (59.1%) versus 58 eyes complex (40.9%) CSCR. A linear normal model confirmed a positive association between complex CSCR and higher ASSP thickness (β = 26.1, 95% CL = 12.1/40.1, p < 0.001), with a low prevalence of ciliochoroidal effusion loculations in AS-OCT (1/142 eyes, 0.7%). ASSP thickening was positively linked to the presence of posterior cystoid retinal degeneration (PCRD; p = 0.002), indicating a potential role in the pathogenesis of severe CSCR phenotypes. In the subgroup of treated patients (61 eyes), 63.9% had a complete response after PDT. In these patients a logistic binary model highlighted a significantly higher risk of PDT non-responsiveness (OR = 9.62, 95% CL = 2.44/37.9, p = 0.001) associated with a 60-unit increase in ASSP thickness levels. By contrast, other anatomical parameters (i.e., body surface area, age, gender, axial length) showed no remarkable prognostic roles. CONCLUSION This research highlighted the association of ASSP thickening with complex CSCR phenotype in Caucasian patients and its role in predicting PDT efficacy. These findings enhance our comprehension of the anatomical risk factors in patients affected with CSCR and potentially guide a better understanding of non-responsive cases to PDT treatment.
Collapse
Affiliation(s)
- Paolo Forte
- Eye UnitIRCCS Ospedale Policlinico San MartinoGenoaItaly
- DINOGMIUniversity of GenoaGenoaItaly
- Department of Ophthalmology, Jules‐Gonin Eye Hospital, Fondation Asile des AveuglesUniversity of LausanneLausanneSwitzerland
| | - Jennifer Cattaneo
- Department of Ophthalmology, Jules‐Gonin Eye Hospital, Fondation Asile des AveuglesUniversity of LausanneLausanneSwitzerland
| | | | - Alessandro Arrigo
- Fondazione Italiana Macula ETSGenoaItaly
- Department of OphthalmologyIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Paolo Corazza
- Eye UnitIRCCS Ospedale Policlinico San MartinoGenoaItaly
- DINOGMIUniversity of GenoaGenoaItaly
| | - Donatella Musetti
- Eye UnitIRCCS Ospedale Policlinico San MartinoGenoaItaly
- DINOGMIUniversity of GenoaGenoaItaly
| | - Raffaella Rosa
- Eye UnitIRCCS Ospedale Policlinico San MartinoGenoaItaly
- DINOGMIUniversity of GenoaGenoaItaly
| | - Carlo Enrico Traverso
- Eye UnitIRCCS Ospedale Policlinico San MartinoGenoaItaly
- DINOGMIUniversity of GenoaGenoaItaly
| | - Vincenzo Fontana
- Clinical Epidemiology UnitIRCCS Ospedale Policlinico San MartinoGenoaItaly
| | - Marco Lupidi
- Fondazione Italiana Macula ETSGenoaItaly
- Eye Clinic, Department of Experimental and Clinical MedicinePolytechnic University of MarcheAnconaItaly
| | - Chiara Maria Eandi
- Department of Ophthalmology, Jules‐Gonin Eye Hospital, Fondation Asile des AveuglesUniversity of LausanneLausanneSwitzerland
- Fondazione Italiana Macula ETSGenoaItaly
- Department of Surgical SciencesUniversity of TorinoTorinoItaly
| | - Massimo Nicolò
- Eye UnitIRCCS Ospedale Policlinico San MartinoGenoaItaly
- DINOGMIUniversity of GenoaGenoaItaly
- Fondazione Italiana Macula ETSGenoaItaly
| |
Collapse
|
2
|
Siddharth A, Bhandari A, Singh SS, Udai AD. Effect of twisting of intravitreal injections on ocular bio-mechanics: a novel insight to ocular surgery. Biomech Model Mechanobiol 2024; 23:1013-1030. [PMID: 38361086 DOI: 10.1007/s10237-024-01819-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 01/02/2024] [Indexed: 02/17/2024]
Abstract
Although intravitreal (IVT) injections provide several advantages in treating posterior segment eye diseases, several associated challenges remain. The current study uses the finite element method (FEM) to highlight the effect of IVT needle rotation along the insertion axis on the reaction forces and deformation inside the eye. A comparison of the reaction forces at the eye's key locations has been made with and without rotation. In addition, a sensitivity analysis of various parameters, such as the needle's angular speed, insertion location, angle, gauge, shape, and intraocular pressure (IOP), has been carried out to delineate the individual parameter's effect on reaction forces during rotation. Results demonstrate that twisting the needle significantly reduces the reaction forces at the penetration location and throughout the needle travel length, resulting in quicker penetration. Moreover, ocular biomechanics are influenced by needle insertion location, angle, shape, size, and IOP. The reaction forces incurred by the patient may be reduced by using a bevel needle of the higher gauge when inserted close to the normal of the local scleral surface toward the orra serrata within the Pars Plana region. Results obtained from the current study can deepen the understanding of the twisting needle's interaction with the ocular tissue.
Collapse
Affiliation(s)
- Ashish Siddharth
- Department of Mechanical Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, 826004, India
| | - Ajay Bhandari
- Department of Mechanical Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, 826004, India.
| | - Sarthak S Singh
- Department of Mechanical Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, 826004, India
| | - Arun Dayal Udai
- Department of Mechanical Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, 826004, India.
| |
Collapse
|
3
|
Recent advances in ophthalmic preparations: Ocular barriers, dosage forms and routes of administration. Int J Pharm 2021; 608:121105. [PMID: 34537269 DOI: 10.1016/j.ijpharm.2021.121105] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/27/2021] [Accepted: 09/13/2021] [Indexed: 12/16/2022]
Abstract
The human eye is a complex organ with unique anatomy and physiology that restricts the delivery of drugs to target ocular tissues/sites. Recent advances in the field of pharmacy, biotechnology and material science have led to development of novel ophthalmic dosage forms which can provide sustained drug delivery, reduce dosing frequency and improve the ocular bioavailability of drugs. This review highlights the different anatomical and physiological factors which affect ocular bioavailability of drugs and explores advancements from 2016 to 2020 in various ophthalmic preparations. Different routes of drug administration such as topical, intravitreal, intraocular, juxtascleral, subconjunctival, intracameral and retrobulbar are discussed with their advances and limitations.
Collapse
|
4
|
Hatami-Marbini H, Pachenari M. Tensile Viscoelastic Properties of the Sclera after Glycosaminoglycan Depletion. Curr Eye Res 2021; 46:1299-1308. [PMID: 34325593 DOI: 10.1080/02713683.2021.1874026] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE Fibrillar collagen network and glycosaminoglycans (GAGs) are the primary components of extracellular matrix (ECM) of the sclera. The main goal of this study was to investigate the possible structural roles of GAGs in the scleral tensile properties as a function of preconditioning and displacement rate. METHODS Four-step uniaxial stress-relaxation tests were used for characterizing the viscoelastic tensile response of the posterior porcine sclera with and without enzymatic GAG removal. The scleral strips were divided into different groups based on the displacement rate and the presence or absence of a preconditioning step in the loading protocol. The groups were (1) displacement rate of 0.2 mm/min without preconditioning, (2) displacement rate of 1 mm/min without preconditioning, (3) displacement rate of 0.2 mm/min with preconditioning, and (4) displacement rate of 1 mm/min with preconditioning. The peak stress, equilibrium stress, and the equilibrium elastic modulus were calculated for all specimens and compared against each other. RESULTS Increasing the displacement rate from 0.2 mm/min to 1.0 mm/min was found to cause an insignificant change in the equilibrium stress and equilibrium elastic modulus of porcine scleral strips. Removal of GAGs resulted in an overall stiffer tensile behavior independent of the displacement rate in samples that were not preconditioned (P < .05). The behavior of preconditioned samples with and without GAG removal was not significantly different from each other. CONCLUSIONS The experimental measurements of the present study showed that GAGs play an important role in the mechanical properties of the posterior porcine sclera. Furthermore, using a preconditioning step in the uniaxial testing protocol resulted in not being able to identify any significant difference in the tensile behavior of GAG depleted and normal scleral strips.
Collapse
Affiliation(s)
- Hamed Hatami-Marbini
- Computational Biomechanics Research Laboratory, Mechanical and Industrial Engineering Department, University of Illinois at Chicago, Chicago, IL, USA
| | - Mohammad Pachenari
- Computational Biomechanics Research Laboratory, Mechanical and Industrial Engineering Department, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
5
|
Pachenari M, Hatami-Marbini H. Regional Differences in the Glycosaminoglycan Role in Porcine Scleral Hydration and Mechanical Behavior. Invest Ophthalmol Vis Sci 2021; 62:28. [PMID: 33749719 PMCID: PMC7991977 DOI: 10.1167/iovs.62.3.28] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose This study characterized the role of glycosaminoglycans (GAGs) in the hydration, thickness, and biomechanical properties of posterior and anterior porcine sclera. Methods The scleral discs and strips were obtained from the anterior and posterior parts of porcine eyes, and their initial hydration and thickness were measured. The anterior and posterior scleral discs were used to show the efficacy of the GAG removal protocol by quantifying their GAG content. The strips were divided into three groups of PBS treatment, buffer treatment, and enzyme treatment in order to assess the effects of different treatment procedures on the thickness, hydration, and viscoelastic properties of the samples. The mechanical properties of the strips were determined by performing uniaxial tensile stress relaxation experiments. Results It was found that the control and buffer groups had insignificant differences in all measured quantities. The samples from the posterior region had a significantly larger GAG content and thickness in comparison with those from anterior region; however, there was an insignificant difference in their hydration. The GAG depletion process decreased the hydration of both anterior and posterior samples significantly (P < 0.05). Furthermore, the mechanical tests showed that the removal of GAGs resulted in stiffer mechanical behavior in both anterior and posterior samples (P < 0.05). In particular, the peak stress and equilibrium stress were significantly larger for the strips in the enzyme treatment group. Conclusions GAGs and their interaction with the collagen network are important in defining the hydration and mechanical properties of both posterior and anterior sclera.
Collapse
Affiliation(s)
- Mohammad Pachenari
- Computational Biomechanics Research Laboratory, Mechanical and Industrial Engineering Department, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Hamed Hatami-Marbini
- Computational Biomechanics Research Laboratory, Mechanical and Industrial Engineering Department, University of Illinois at Chicago, Chicago, Illinois, United States
| |
Collapse
|
6
|
Hatami-Marbini H, Pachenari M. The contribution of sGAGs to stress-controlled tensile response of posterior porcine sclera. PLoS One 2020; 15:e0227856. [PMID: 32084141 PMCID: PMC7034872 DOI: 10.1371/journal.pone.0227856] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 12/31/2019] [Indexed: 11/19/2022] Open
Abstract
Despite the significant progress in characterizing mechanical functions of individual scleral extracellular matrix (ECM) components, the biomechanical contribution of sulfated glycosaminoglycans (sGAGs) is still poorly understood. The primary purpose of this study was to determine the possible function of sGAGs in scleral mechanical response by characterizing the tensile behavior of normal and sGAG-depleted samples. We used chondroitinase ABC solution to remove sGAGs from scleral samples that were dissected from posterior porcine eyes. We performed biochemical analyses for assessing the efficacy of sGAG removal protocol. Furthermore, we conducted stress-controlled uniaxial tensile tests to characterize the influence of sGAG removal on mechanical properties of sclera. The tensile behavior of scleral strips right after dissection and after being soaked in buffer was also determined. Biochemical analyses confirmed that 18 hour incubation in 0.125 U/ml Chondroitinase ABC solution removed over 90% of chondroitin and dermatan sGAGs. No significant difference was observed in the thickness/hydration of samples because of enzyme- and buffer-treated samples. Furthermore, it was found that sGAG depletion did not significantly alter the tangent modulus, energy dissipation, and peak strain of posterior scleral strips. It was concluded that sGAGs did not influence the stress-controlled viscoelastic tensile response of sclera.
Collapse
Affiliation(s)
- Hamed Hatami-Marbini
- Mechanical and Industrial Engineering Department, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Mohammad Pachenari
- Mechanical and Industrial Engineering Department, University of Illinois at Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
7
|
Phan CM, Walther H, Qiao H, Shinde R, Jones L. Development of an Eye Model With a Physiological Blink Mechanism. Transl Vis Sci Technol 2019; 8:1. [PMID: 31534830 PMCID: PMC6727780 DOI: 10.1167/tvst.8.5.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/04/2019] [Indexed: 01/26/2023] Open
Abstract
Purpose To develop an eye model with a physiological blink mechanism. Methods All parts of the eye model were designed using computer-aided design software. The eyelid consisted of a unique 3D printed structure containing teeth to physically secure a flexible membrane. Both the eyeball and eyelid membrane were synthesized using polyvinyl alcohol (PVA). Four molecular weights of PVA (89–98, 85–124, 130, and 146–186 kDa) were tested at a range of concentrations between 5% and 30% weight/volume. The wettability and water content of these materials were compared with the bovine cornea and sclera. The model was connected to a microfluidic pump, which delivers artificial tear solution (ATS) to the eyelid. A corneal topographer was used to evaluate the tear break-up and tear film regeneration. Results The eyelid flexes and slides across the eyeball during each blink, which ensures direct contact between the two surfaces. When loaded with an ATS, this mechanism evenly spreads the solution over the eyeball to generate an artificial tear film. The artificial tear film in this eye model had a tear break-up time (TBUT) of 5.13 ± 0.09 seconds at 1.4 μL/min flow rate, 6 blinks/min, and <25% humidity. Conclusions This model simulates a physiological blink actuation and an artificial tear film layer. Future studies will examine variations in flow rates and ATS composition to simulate clinical values of TBUT. Translational Relevance The eye model could be used to study in vitro TBUT, tear deposition, and simple drug delivery.
Collapse
Affiliation(s)
- Chau-Min Phan
- Centre for Ocular Research & Education (CORE), School of Optometry and Vision Science, University of Waterloo, Waterloo, ON, Canada
| | - Hendri Walther
- Centre for Ocular Research & Education (CORE), School of Optometry and Vision Science, University of Waterloo, Waterloo, ON, Canada
| | - Ha Qiao
- Centre for Ocular Research & Education (CORE), School of Optometry and Vision Science, University of Waterloo, Waterloo, ON, Canada
| | - Ra Shinde
- Manipal Academy of Higher Education, Manipal Institute of Technology, Madhav Nagar, Manipal, Karnataka, India
| | - Lyndo Jones
- Centre for Ocular Research & Education (CORE), School of Optometry and Vision Science, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
8
|
Midgett DE, Jefferys JL, Quigley HA, Nguyen TD. The Contribution of Sulfated Glycosaminoglycans to the Inflation Response of the Human Optic Nerve Head. Invest Ophthalmol Vis Sci 2019; 59:3144-3154. [PMID: 30025126 PMCID: PMC6018372 DOI: 10.1167/iovs.18-23845] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Purpose In this study, we measured the effect of the removal of sulfated glycosaminoglycans (sGAGs) on the pressure-induced strains of the human lamina cribrosa (LC). Methods We applied an ex vivo inflation method to measure the three-dimensional (3D) deformation response of six human LCs to pressure, before and after the degradation of chondroitin and dermatan sulfates. The experiment used a laser-scanning microscope (LSM) to acquire the second harmonic generation (SHG) signal of the collagen structure in the LC. Digital volume correlation (DVC) was used to calculate the deformation in the LC after a change in pressure from 5 to 45 mm Hg. Results The average strains between 5 and 45 mm Hg in the LC decreased significantly after sGAG degradation (P ≤ 0.03), with the greatest change occurring in regions of previously high strain (P ≤ 0.003) and the peripheral regions of the LC (P ≤ 0.02). The stiffening effect was greater in the LC of middle-aged (42–49 years) donors compared with those of older (64–88 years) donors (P < 0.0001). Conclusions The LC experienced less strain at the same pressures after most sGAGs were removed. These results suggest that the natural decrease in sGAGs within the LC with age may contribute to the stiffer inflation response of older LC to IOP. Likewise, the increase in the amount of sGAGs observed in the LC of glaucomatous eyes, may contribute to a more compliant LC, which may affect the susceptibility and progression of axon damage.
Collapse
Affiliation(s)
- Dan E Midgett
- Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, Maryland, United States
| | - Joan L Jefferys
- Wilmer Ophthalmological Institute, School of Medicine, The Johns Hopkins University, Baltimore, Maryland, United States
| | - Harry A Quigley
- Wilmer Ophthalmological Institute, School of Medicine, The Johns Hopkins University, Baltimore, Maryland, United States
| | - Thao D Nguyen
- Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, Maryland, United States
| |
Collapse
|
9
|
Murienne BJ, Chen ML, Quigley HA, Nguyen TD. The contribution of glycosaminoglycans to the mechanical behaviour of the posterior human sclera. J R Soc Interface 2016; 13:20160367. [PMID: 27358279 PMCID: PMC4938097 DOI: 10.1098/rsif.2016.0367] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 06/06/2016] [Indexed: 01/26/2023] Open
Abstract
We characterized the structural and mechanical changes after experimental digestion of sulfated glycosaminoglycans (s-GAGs) in the human posterior sclera, using ultrasound thickness measurements and an inflation test with three-dimensional digital image correlation (3D-DIC). Each scleral specimen was first incubated in a buffer solution to return to full hydration, inflation tested, treated in a buffer solution with chondroitinase ABC (ChABC), then inflation tested again. After each test series, the thickness of eight locations was measured. After enzymatic treatment, the average scleral thickness decreased by 13.3% (p < 0.001) and there was a stiffer overall stress-strain response (p < 0.05). The stress-strain response showed a statistically significant increase in the low-pressure stiffness, high-pressure stiffness and hysteresis. Thus, s-GAGs play a measurable role in the mechanical behaviour of the posterior human sclera.
Collapse
Affiliation(s)
- Barbara J Murienne
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Michelle L Chen
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Harry A Quigley
- Glaucoma Center of Excellence, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Thao D Nguyen
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
10
|
Nayar VT, Weiland JD, Hodge AM. Macrocompression and Nanoindentation of Soft Viscoelastic Biological Materials. Tissue Eng Part C Methods 2012; 18:968-75. [DOI: 10.1089/ten.tec.2012.0034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Affiliation(s)
- V. Timothy Nayar
- Doheny Eye Institute, University of Southern California, Los Angeles, California
| | - James D. Weiland
- Doheny Eye Institute, University of Southern California, Los Angeles, California
| | - Andrea M. Hodge
- Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, California
| |
Collapse
|