1
|
Nai EA, Thurbide KB. Supercritical Fluid Chromatography of Organic Bases Using a Modified Water Stationary Phase. Chromatographia 2022. [DOI: 10.1007/s10337-022-04208-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
2
|
Deodhar M, Rihani SBA, Darakjian L, Turgeon J, Michaud V. Assessing the Mechanism of Fluoxetine-Mediated CYP2D6 Inhibition. Pharmaceutics 2021; 13:pharmaceutics13020148. [PMID: 33498694 PMCID: PMC7912198 DOI: 10.3390/pharmaceutics13020148] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 12/27/2022] Open
Abstract
Fluoxetine is still one of the most widely used antidepressants in the world. The drug is extensively metabolized by several cytochrome P450 (CYP450) enzymes and subjected to a myriad of CYP450-mediated drug interactions. In a multidrug regimen, preemptive mitigation of drug-drug interactions requires knowledge of fluoxetine actions on these CYP450 enzymes. The major metabolic pathway of fluoxetine leading to the formation of its active metabolite, norfluoxetine, is mediated by CYP2D6. Fluoxetine and norfluoxetine are strong affinity substrates of CYP2D6 and can inhibit, potentially through various mechanisms, the metabolism of other sensitive CYP2D6 substrates. Remarkably, fluoxetine-mediated CYP2D6 inhibition subsides long after fluoxetine first passes through the liver and even remains long after the discontinuation of the drug. Herein, we review pharmacokinetic and pharmacogenetic information to help us understand the mechanisms underlying the prolonged inhibition of CYP2D6 following fluoxetine administration. We propose that long-term inhibition of CYP2D6 is likely a result of competitive inhibition. This is due to strong affinity binding of fluoxetine and norfluoxetine to the enzyme and unbound fluoxetine and norfluoxetine levels circulating in the blood for a long period of time because of their long elimination half-life. Additionally, we describe that fluoxetine is a CYP2C9 substrate and a mechanism-based inhibitor of CYP2C19.
Collapse
Affiliation(s)
- Malavika Deodhar
- Precision Pharmacotherapy Research and Development Institute, Tabula Rasa Health Care, Lake Nona, Orlando, FL 32827, USA; (M.D.); (S.B.A.R.); (L.D.); (J.T.)
| | - Sweilem B. Al Rihani
- Precision Pharmacotherapy Research and Development Institute, Tabula Rasa Health Care, Lake Nona, Orlando, FL 32827, USA; (M.D.); (S.B.A.R.); (L.D.); (J.T.)
| | - Lucy Darakjian
- Precision Pharmacotherapy Research and Development Institute, Tabula Rasa Health Care, Lake Nona, Orlando, FL 32827, USA; (M.D.); (S.B.A.R.); (L.D.); (J.T.)
| | - Jacques Turgeon
- Precision Pharmacotherapy Research and Development Institute, Tabula Rasa Health Care, Lake Nona, Orlando, FL 32827, USA; (M.D.); (S.B.A.R.); (L.D.); (J.T.)
- Faculty of pharmacy, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Veronique Michaud
- Precision Pharmacotherapy Research and Development Institute, Tabula Rasa Health Care, Lake Nona, Orlando, FL 32827, USA; (M.D.); (S.B.A.R.); (L.D.); (J.T.)
- Faculty of pharmacy, Université de Montréal, Montréal, QC H3C 3J7, Canada
- Correspondence: or
| |
Collapse
|
3
|
Claesson A, Minidis A. Systematic Approach to Organizing Structural Alerts for Reactive Metabolite Formation from Potential Drugs. Chem Res Toxicol 2018; 31:389-411. [DOI: 10.1021/acs.chemrestox.8b00046] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Alf Claesson
- Awametox AB, Lilldalsvägen 17 A, SE-14461 Rönninge, Sweden
| | | |
Collapse
|
4
|
Darko E, Thurbide KB. Capillary gas chromatographic separation of organic bases using a pH-adjusted basic water stationary phase. J Chromatogr A 2016; 1465:184-9. [DOI: 10.1016/j.chroma.2016.08.059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 08/24/2016] [Accepted: 08/25/2016] [Indexed: 10/21/2022]
|
5
|
Mifsud J, Sghendo LJ. A novel chiral GC/MS method for the analysis of fluoxetine and norfluoxetine enantiomers in biological fluids. J Pharm Bioallied Sci 2012; 4:236-45. [PMID: 22923967 PMCID: PMC3425174 DOI: 10.4103/0975-7406.99065] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 12/13/2011] [Accepted: 12/20/2011] [Indexed: 11/24/2022] Open
Abstract
Aims: A novel robust chiral gas chromatographic/mass spectrometric (GC/MS) method for the separation and measurement of fluoxetine and norfluoxetine enantiomers in urine and plasma was developed. Materials and Methods: The drug was extracted from the samples by a liquid–liquid technique, using chloroform, and the enantiomers were separated and measured on a chiral gas chromatographic column (HYDRODEX β-6TBDM®, 0.25 μm × 0.25 mm × 50 m). GC/MS instrumentation was used for the acquisition of data in the electron impact selective-ion monitoring mode. Results: The ions chosen were of a mass-to-charge ratio (m/z) exactly equal to 44 units, in order to measure fluoxetine enantiomers, 134 units in order to measure norfluoxetine enantiomers, and 58 units in order to measure diphenhydramine, the internal standard. The method was found to be linear and reproducible in the 50–500 ng/mL concentration range for both urine samples and plasma samples and for both fluoxetine and norfluoxetine, with correlation coefficients ranging between 0.994 and 0.997. Conclusions: This methodology has an enormous potential for application in pharmacokinetic studies of the enantiomers of fluoxetine
Collapse
Affiliation(s)
- Janet Mifsud
- Department of Clinical Pharmacology and Therapeutics, The University of Malta, Msida, MSD 2040, Malta
| | | |
Collapse
|
6
|
Houbart V, Servais AC, Charlier TD, Pawluski JL, Abts F, Fillet M. A validated microfluidics-based LC-chip-MS/MS method for the quantitation of fluoxetine and norfluoxetine in rat serum. Electrophoresis 2012; 33:3370-9. [DOI: 10.1002/elps.201200168] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 05/24/2012] [Accepted: 05/25/2012] [Indexed: 11/11/2022]
Affiliation(s)
- Virginie Houbart
- Laboratory of Analytical Pharmaceutical Chemistry; Department of Pharmacy; CIRM; University of Liège; Belgium
| | - Anne-Catherine Servais
- Laboratory of Analytical Pharmaceutical Chemistry; Department of Pharmacy; CIRM; University of Liège; Belgium
| | | | | | | | - Marianne Fillet
- Laboratory of Analytical Pharmaceutical Chemistry; Department of Pharmacy; CIRM; University of Liège; Belgium
| |
Collapse
|
7
|
Crisafulli C, Fabbri C, Porcelli S, Drago A, Spina E, De Ronchi D, Serretti A. Pharmacogenetics of antidepressants. Front Pharmacol 2011; 2:6. [PMID: 21687501 PMCID: PMC3108562 DOI: 10.3389/fphar.2011.00006] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 02/04/2011] [Indexed: 12/28/2022] Open
Abstract
Up to 60% of depressed patients do not respond completely to antidepressants (ADs) and up to 30% do not respond at all. Genetic factors contribute for about 50% of the AD response. During the recent years the possible influence of a set of candidate genes as genetic predictors of AD response efficacy was investigated by us and others. They include the cytochrome P450 superfamily, the P-glycoprotein (ABCB1), the tryptophan hydroxylase, the catechol-O-methyltransferase, the monoamine oxidase A, the serotonin transporter (5-HTTLPR), the norepinephrine transporter, the dopamine transporter, variants in the 5-hydroxytryptamine receptors (5-HT1A, 5-HT2A, 5-HT3A, 5-HT3B, and 5-HT6), adrenoreceptor beta-1 and alpha-2, the dopamine receptors (D2), the G protein beta 3 subunit, the corticotropin releasing hormone receptors (CRHR1 and CRHR2), the glucocorticoid receptors, the c-AMP response-element binding, and the brain-derived neurotrophic factor. Marginal associations were reported for angiotensin I converting enzyme, circadian locomotor output cycles kaput protein, glutamatergic system, nitric oxide synthase, and interleukin 1-beta gene. In conclusion, gene variants seem to influence human behavior, liability to disorders and treatment response. Nonetheless, gene × environment interactions have been hypothesized to modulate several of these effects.
Collapse
|
8
|
Wei F, Fan J, Zheng MM, Feng YQ. Combining poly (methacrylic acid-co-ethylene glycol dimethacrylate) monolith microextraction and octadecyl phosphonic acid-modified zirconia-coated CEC with field-enhanced sample injection for analysis of antidepressants in human plasma and urine. Electrophoresis 2010; 31:714-23. [DOI: 10.1002/elps.200900425] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
9
|
Zhu H, Luo J, Zheng G, ShenTu J. Sensitive and specific liquid chromatography-tandem mass spectrometry method for assay of fluoxetine and its metabolite norfluoxetine in human plasma and application of method to pharmacokinetic analysis. JOURNAL OF ANALYTICAL CHEMISTRY 2009. [DOI: 10.1134/s1061934809090123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Zhou N, Chen BM, Pan T, Liu S. Determination of Fluoxetine in Human Plasma by Liquid Chromatography–Mass Spectrometry and Its Application. ANAL LETT 2009. [DOI: 10.1080/00032710903082804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
de Castro A, Ramírez Fernandez MDM, Laloup M, Samyn N, De Boeck G, Wood M, Maes V, López-Rivadulla M. High-throughput on-line solid-phase extraction–liquid chromatography–tandem mass spectrometry method for the simultaneous analysis of 14 antidepressants and their metabolites in plasma. J Chromatogr A 2007; 1160:3-12. [PMID: 17321530 DOI: 10.1016/j.chroma.2007.01.137] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2006] [Revised: 01/15/2007] [Accepted: 01/18/2007] [Indexed: 10/23/2022]
Abstract
A rapid, sensitive and fully automated on-line solid-phase extraction-liquid chromatography-tandem mass spectrometry (SPE-LC-MS/MS) method was developed and validated for the direct analysis of 14 antidepressants and their metabolites in plasma. Integration of the sample extraction and LC separation into a single system permitted direct injection of the plasma without prior sample pre-treatment. The applied gradient ensured the elution of all the examined drugs within 14 min and produced chromatographic peaks of acceptable symmetry. The total process time was 20 min and only 50 microL of plasma was required. Selectivity of the method was achieved by a combination of retention time and two precursor-product ion transitions for the non-deuterated compounds. The use of SPE was demonstrated to be highly effective and led to significant decreases in the interferences present in the matrix. Extraction was found to be both reproducible and efficient with recoveries >99% for all the analytes. The method showed excellent intra-assay and inter-assay precision (relative standard deviation (RSD) and bias <20%) for quality control (QC) samples spiked at a concentration of 40, 200 and 800 microg/L and the r2>0.99 over the range investigated (10-1000 microg/L). Limits of quantification (LOQs) were estimated to be 10 microg/L. Furthermore, the processed samples were demonstrated to be stable for at least 48 h, except for clomipramine and norclomipramine, where a slight negative trend was observed, but did not compromise the quantification. The method was subsequently applied to authentic samples previously screened by a routine HPLC method with diode array detection (DAD).
Collapse
Affiliation(s)
- Ana de Castro
- Forensic Toxicology Service, Institute of Legal Medicine, University of Santiago de Compostela, Santiago de Compostela, Spain
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Reinscheid UM, Vervoort J, Zuilhof H. Mild hydrolysis of 2-trifluoromethylphenol: kinetics, mechanism and environmental relevance. CHEMOSPHERE 2006; 65:318-23. [PMID: 16563466 DOI: 10.1016/j.chemosphere.2006.02.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2005] [Revised: 02/12/2006] [Accepted: 02/13/2006] [Indexed: 05/08/2023]
Abstract
2-Trifluoromethylphenol was hydrolysed in a phosphate buffer at neutral pH. At mild temperatures ranging from 34 degrees C to 69 degrees C this compound liberates consecutively fluorine anions to form salicylic acid. This process is energetically driven by the hydration of the fluorine anions. No intermediates have been detected by HPLC and (19)F-NMR and this was confirmed by computer calculations which favor the first step in the whole reaction sequence being rate-limiting. Accordingly, the reaction energy of the first dehalogenation of the trifluoromethyl anion is 28.4 kcal mol(-1) higher than for the second dehalogenation. The pseudo-first-order kinetic was determined and from an Arrhenius diagram an activation energy of E(a)=25.1 kcal mol(-1) has been estimated. At 37 degrees C and a pH of 7.4 the half-life was 6.9 h. The rate of hydrolysis was favored at higher pH and it was not influenced by oxygen, sunlight or trace elements found in natural water. The latter was shown by incubations with lake water instead of distilled water.
Collapse
Affiliation(s)
- Uwe M Reinscheid
- Max Planck Institute for Biophysical Chemistry, NMR II, Am Fassberg 11, 37 077 Göttingen, Germany.
| | | | | |
Collapse
|
13
|
Rittenbach K, Sloley BD, Ling L, Coutts RT, Shan J, Baker GB. A rapid, sensitive electron-capture gas chromatographic procedure for analysis of metabolites of N-methyl,N-propargylphenylethylamine, a potential neuroprotective agent. J Pharmacol Toxicol Methods 2005; 52:373-8. [PMID: 16087356 DOI: 10.1016/j.vascn.2005.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2005] [Accepted: 07/01/2005] [Indexed: 11/26/2022]
Abstract
INTRODUCTION N-Methyl,N-propargyphenylethylamine (MPPE) is a novel analog of (-)-deprenyl, a drug prescribed for Parkinson's disease and shown to have neuroprotective and neurorescue properties in a wide variety of in vitro and in vivo models. MPPE is also neuroprotective, but has the advantage over (-)-deprenyl of not being metabolized to amphetamine or N-methylamphetamine. METHOD In this paper, extractive derivatization with pentafluorobenzenesulfonyl chloride (PFBSC) followed by electron-capture gas chromatography was utilized to study the metabolism of MPPE. RESULTS The procedure is rapid and reproducible, giving derivatives with excellent chromatographic properties. Using this procedure, it has now been shown that beta-phenylethylamine (PEA), N-methylphenylethylamine (N-methylPEA) and N-propargylphenylethylamine (N-propargylPEA) are formed from MPPE during incubation of this drug with human liver microsomes. Levels of all three metabolites were shown to increase with increasing time of incubation with the microsomes. DISCUSSION Extractive derivatization with PFBSC followed by electron-capture gas chromatography represents an efficient means of separating and quantitating the metabolites of MPPE, a novel neuroprotective agent.
Collapse
Affiliation(s)
- Kay Rittenbach
- Neurochemical Research Unit, Department of Psychiatry, 1E7.31 Mackenzie Centre, University of Alberta, Edmonton, Alberta, Canada T6G 2R7.
| | | | | | | | | | | |
Collapse
|
14
|
Li C, Ji Z, Nan F, Shao Q, Liu P, Dai J, Zhen J, Yuan H, Xu F, Cui J, Huang B, Zhang M, Yu C. Liquid chromatography/tandem mass spectrometry for the determination of fluoxetine and its main active metabolite norfluoxetine in human plasma with deuterated fluoxetine as internal standard. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2002; 16:1844-1850. [PMID: 12271449 DOI: 10.1002/rcm.800] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Fluoxetine (F) and its N-demehylated metabolite norfluoxetine (NF) are selective inhibitors of serotonin reuptake in humans. A new sensitive rapid method for the simultaneous determination of F and NF in plasma was established and validated, and was further applied to assess the bioequivalence of two oral formulations of F in 22 healthy Chinese male volunteers who received a single oral dose of each formulation (containing 20 mg of fluoxetine hydrochloride). The new method involves using liquid chromatography/tandem mass spectrometry (LC/MS/MS) in multiple reaction monitoring mode with deuterated fluoxetine (DF) as internal standard. High levels of analytical sensitivity and specificity of MS/MS detection enabled use of a simple liquid-liquid extraction procedure. The combination of a simple sample clean-up procedure and short chromatographic run-time (5 min) considerably increased the productivity of the analytical method. The method was validated for the plasma concentration range 0.27-22 ng/mL for both of the test compounds, and the calibration curves were linear with coefficients of correlation >0.999. The limit of detection was 0.1 ng/mL for plasma F and NF. Taking the plasma sample size (200 micro L) into account the new method for determination of F and NF is more sensitive than those described previously.
Collapse
Affiliation(s)
- Chuan Li
- Shanghai Institute of Materia Medica, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, 294 Taiyuan Road, Shanghai 200031, China.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|