1
|
Dong X, Wang X, Xu X, Song Y, Nie X, Jia W, Guo W, Zhang F. An untargeted metabolomics approach to identify markers to distinguish duck eggs that come from different poultry breeding systems by ultra high performance liquid chromatography-high resolution mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1179:122820. [PMID: 34325310 DOI: 10.1016/j.jchromb.2021.122820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 04/06/2021] [Accepted: 05/29/2021] [Indexed: 11/26/2022]
Abstract
Untargeted metabolomics approach based on ultra high performance liquid chromatography coupled with high resolution mass spectrometry (UHPLC-HRMS) was used to investigate the differences in cage duck eggs and sea duck eggs that from different poultry breeding system, which could help to combat fraud within the egg industry. High dimensions and complex data collected by UHPLC-HRMS were analyzed by multivariate statistical analysis. Identification model of sea duck eggs based on was established. After matching with the chemical databases, four potential markers were putatively matched. Further analysis showed that three of them were confirmed by reference standards. All these three markers (n-behenoyl-d-erythro-sphingosine, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine and n-nervonoyl-d-erythro-sphingosine) have higher content in sea duck eggs. The quantitative analysis showed that the content difference of three markers in farm samples were in highly consistent with the concentration changes measured in experimental samples, which indicate that these three markers are reliable.
Collapse
Affiliation(s)
- Xuyang Dong
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing 100176, China; School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Xiujuan Wang
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing 100176, China
| | - Xiuli Xu
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing 100176, China
| | - Yaxuan Song
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing 100176, China
| | - Xuemei Nie
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing 100176, China
| | - Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Wei Guo
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing 100176, China
| | - Feng Zhang
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing 100176, China.
| |
Collapse
|
2
|
Development and validation of LC-MS/MS method for determination of very long acyl chain (C22:0 and C24:0) ceramides in human plasma. Anal Bioanal Chem 2013; 405:7357-65. [PMID: 23857140 DOI: 10.1007/s00216-013-7166-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Revised: 06/18/2013] [Accepted: 06/20/2013] [Indexed: 01/14/2023]
Abstract
Ceramide is a key metabolite in both anabolic and catabolic pathways of sphingolipids. The very long fatty acyl chain ceramides N-(docosanoyl)-sphing-4-enine (Cer(22:0)) and N-(tetracosanoyl)-sphing-4-enine (Cer(24:0)) are associated with multiple biological functions. Elevated levels of these sphingolipids in tissues and in the circulation have been associated with insulin resistance and diabetes. To facilitate quantification of these very long chain ceramides in clinical samples from human subjects, we have developed a sensitive, accurate, and high-throughput assay for determination of Cer(22:0) and Cer(24:0) in human plasma. Cer(22:0) and Cer(24:0) and their deuterated internal standards were extracted by protein precipitation and chromatographically separated by HPLC. The analytes and their internal standards were ionized using positive-ion electrospray mass spectrometry, then detected by multiple-reaction monitoring with a tandem mass spectrometer. Total liquid chromatography-tandem mass spectrometry (LC-MS/MS) runtime was 5 min. The assay exhibited a linear dynamic range of 0.02-4 and 0.08-16 μg/ml for Cer(22:0) and Cer(24:0), respectively, in human plasma with corresponding absolute recoveries from plasma at 109 and 114 %, respectively. The lower limit of quantifications were 0.02 and 0.08 μg/ml for Cer(22:0) and Cer(24:0), respectively. Acceptable precision and accuracy were obtained for concentrations over the calibration curve ranges. With the semi-automated format and short LC runtime for the assay, a throughput of ∼200 samples/day can easily be achieved.
Collapse
|
3
|
Hou H, Li B, Zhang Z, Xue C, Yu G, Wang J, Bao Y, Bu L, Sun J, Peng Z, Su S. Moisture absorption and retention properties, and activity in alleviating skin photodamage of collagen polypeptide from marine fish skin. Food Chem 2012; 135:1432-9. [PMID: 22953877 DOI: 10.1016/j.foodchem.2012.06.009] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 06/02/2012] [Accepted: 06/08/2012] [Indexed: 11/18/2022]
Abstract
Collagen polypeptides were prepared from cod skin. Moisture absorption and retention properties of collagen polypeptides were determined at different relative humidities. In addition, the protective effects of collagen polypeptide against UV-induced damage to mouse skin were evaluated. Collagen polypeptides had good moisture absorption and retention properties and could alleviate the damage induced by UV radiation. The action mechanisms of collagen polypeptide mainly involved enhancing immunity, reducing the loss of moisture and lipid, promoting anti-oxidative properties, inhibiting the increase of glycosaminoglycans, repairing the endogenous collagen and elastin protein fibres, and maintaining the ratio of type III to type I collagen.
Collapse
Affiliation(s)
- Hu Hou
- College of Food Science and Engineering, Ocean University of China, No. 5 Yu Shan Road, Qingdao, Shandong Province 266003, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Yamane M, Miyazawa K, Moriya S, Abe A, Yamane S. D,L-Threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (DL-PDMP) increases endoplasmic reticulum stress, autophagy and apoptosis accompanying ceramide accumulation via ceramide synthase 5 protein expression in A549 cells. Biochimie 2011; 93:1446-59. [DOI: 10.1016/j.biochi.2011.04.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2010] [Accepted: 04/20/2011] [Indexed: 11/26/2022]
|
5
|
Nabetani T, Makino A, Hullin-Matsuda F, Hirakawa TA, Takeoka S, Okino N, Ito M, Kobayashi T, Hirabayashi Y. Multiplex analysis of sphingolipids using amine-reactive tags (iTRAQ). J Lipid Res 2011; 52:1294-1302. [PMID: 21487068 DOI: 10.1194/jlr.d014621] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Ceramides play a crucial role in divergent signaling events, including differentiation, senescence, proliferation, and apoptosis. Ceramides are a minor lipid component in terms of content; thus, highly sensitive detection is required for accurate quantification. The recently developed isobaric tags for relative and absolute quantitation (iTRAQ) method enables a precise comparison of both protein and aminophospholipids. However, iTRAQ tagging had not been applied to the determination of sphingolipids. Here we report a method for the simultaneous measurement of multiple ceramide and monohexosylceramide samples using iTRAQ tags. Samples were hydrolyzed with sphingolipid ceramide N-deacylase (SCDase) to expose the free amino group of the sphingolipids, to which the N-hydroxysuccinimide group of iTRAQ reagent was conjugated. The reaction was performed in the presence of a cleavable detergent, 3-[3-(1,1-bisalkyloxyethyl)pyridine-1-yl]propane-1-sulfonate (PPS) to both improve the hydrolysis and ensure the accuracy of the mass spectrometry analysis performed after iTRAQ labeling. This method was successfully applied to the profiling of ceramides and monohexosylceramides in sphingomyelinase-treated Madin Darby canine kidney (MDCK) cells and apoptotic Jurkat cells.
Collapse
Affiliation(s)
- Takuji Nabetani
- Lipid Biology Laboratory, Advanced Science Institute, Brain Science Institute, RIKEN, Wako, Saitama 351-0198, Japan
| | - Asami Makino
- Lipid Biology Laboratory, Advanced Science Institute, Brain Science Institute, RIKEN, Wako, Saitama 351-0198, Japan
| | - Françoise Hullin-Matsuda
- Lipid Biology Laboratory, Advanced Science Institute, Brain Science Institute, RIKEN, Wako, Saitama 351-0198, Japan; INSERM U1060, université Lyon1, INSA-Lyon, 69621 Villeurbanne, France
| | - Taka-Aki Hirakawa
- Lipid Biology Laboratory, Advanced Science Institute, Brain Science Institute, RIKEN, Wako, Saitama 351-0198, Japan; Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University (TWIns), Shinjuku-ku, Tokyo 162-8480, Japan
| | - Shinji Takeoka
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University (TWIns), Shinjuku-ku, Tokyo 162-8480, Japan
| | - Nozomu Okino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8581, Japan
| | - Makoto Ito
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8581, Japan
| | - Toshihide Kobayashi
- Lipid Biology Laboratory, Advanced Science Institute, Brain Science Institute, RIKEN, Wako, Saitama 351-0198, Japan; INSERM U1060, université Lyon1, INSA-Lyon, 69621 Villeurbanne, France.
| | - Yoshio Hirabayashi
- Laboratory for Molecular Membrane Neuroscience, Brain Science Institute, RIKEN, Wako, Saitama 351-0198, Japan
| |
Collapse
|
6
|
Kindt E, Wetterau J, Mueller SB, Castle C, Boustany-Kari CM. Quantitative sphingosine measurement as a surrogate for total ceramide concentration-preclinical and potential translational applications. Biomed Chromatogr 2010; 24:752-8. [PMID: 19908207 DOI: 10.1002/bmc.1359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Biomarkers are an increasingly important constituent of the drug development process, offering the potential of increased efficiency through reduced compound attrition and earlier proof of mechanism and/or efficacy. Assays developed for compound screening that can be directly translated for clinical trials are especially valuable, but their successful adoption requires a careful balance between assay performance and implementation costs. One such 'fit-for-purpose' biomarker assay, the indirect measurement of pharmacological modulation of sphingolipid biosynthesis and disposition, is presented here. Among sphingolipids, numerous ceramide species are readily detectable in different lipoprotein fractions of mammalian plasma, but their parallel quantification can be prohibitively expensive and time consuming. Ceramides differ in their fatty acid moiety, which is readily removed by hydrolysis, yielding a common sphingosine derivative, the measurement of which serves as an indicator of total ceramide. When followed by liquid chromatography tandem mass spectrometry (LC/MS/MS) for detection, robust analyte quantification becomes relatively straightforward. The practical utility of a method developed to be fit for the purpose of rapidly and quantitatively measuring treatment-induced variations in total ceramide from hamster plasma and individual lipoprotein fractions is described. With a linear calibration range from 0.003 to 33.4 microm sphingosine, precision and accuracy error in plasma-based quality controls spiked with ceramides was less than 15%. The specificity of the assay for ceramides was also assessed. The simplicity of the method would allow for its potential translation to other preclinical species, as well as for clinical applications in later-stage drug development.
Collapse
Affiliation(s)
- Erick Kindt
- Department of Pharmacokinetics, Dynamics, and Metabolism, Pfizer Inc., La Jolla, CA, USA
| | | | | | | | | |
Collapse
|
7
|
Masukawa Y, Narita H, Sato H, Naoe A, Kondo N, Sugai Y, Oba T, Homma R, Ishikawa J, Takagi Y, Kitahara T. Comprehensive quantification of ceramide species in human stratum corneum. J Lipid Res 2009; 50:1708-19. [PMID: 19349641 DOI: 10.1194/jlr.d800055-jlr200] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
One of the key challenges in lipidomics is to quantify lipidomes of interest, as it is practically impossible to collect all authentic materials covering the targeted lipidomes. For diverse ceramides (CER) in human stratum corneum (SC) that play important physicochemical roles in the skin, we developed a novel method for quantification of the overall CER species by improving our previously reported profiling technique using normal-phase liquid chromatography-electrospray ionization-mass spectrometry (NPLC-ESI-MS). The use of simultaneous selected ion monitoring measurement of as many as 182 kinds of molecular-related ions enables the highly sensitive detection of the overall CER species, as they can be analyzed in only one SC-stripped tape as small as 5 mm x 10 mm. To comprehensively quantify CERs, including those not available as authentic species, we designed a procedure to estimate their levels using relative responses of representative authentic species covering the species targeted, considering the systematic error based on intra-/inter-day analyses. The CER levels obtained by this method were comparable to those determined by conventional thin-layer chromatography (TLC), which guarantees the validity of this method. This method opens lipidomics approaches for CERs in the SC.
Collapse
Affiliation(s)
- Yoshinori Masukawa
- Tochigi Research Laboratories, Kao Corporation, Ichikai, Haga, Tochigi 321-3497, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Yamane M, Yamane S. The induction of colonocyte differentiation in CaCo-2 cells by sodium butyrate causes an increase in glucosylceramide synthesis in order to avoid apoptosis based on ceramide. Arch Biochem Biophys 2007; 459:159-68. [PMID: 17303065 DOI: 10.1016/j.abb.2007.01.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2006] [Revised: 01/05/2007] [Accepted: 01/06/2007] [Indexed: 10/23/2022]
Abstract
To examine the relationship between apoptosis accompanying differentiation and sphingolipid-metabolism, CaCo-2 cells were used as a model of human intestinal epithelial cells and the variation in cellular Cer/GlcCer-content and related enzyme activities during butyrate-induced differentiation were investigated. The simultaneous administration of PDMP as a GlcCer synthase inhibitor caused a significant increase in the amount of Cers, especially palmitoyl-Cer. Butyrate caused an increase in the amount of GlcCers, especially alpha-hydroxy fatty acid-GlcCers, and in cellular GlcCer synthase activity. Cellular Cer content related to apoptosis was mainly regulated by the GlcCer synthase-based metabolism of Cers.
Collapse
Affiliation(s)
- Mototeru Yamane
- Department of Biochemistry, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160, Japan.
| | | |
Collapse
|
9
|
Masukawa Y, Tsujimura H. Highly sensitive determination of diverse ceramides in human hair using reversed-phase high-performance liquid chromatography-electrospray ionization mass spectrometry. Lipids 2007; 42:275-90. [PMID: 17393232 DOI: 10.1007/s11745-006-3012-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2006] [Accepted: 11/27/2006] [Indexed: 01/30/2023]
Abstract
Since ceramides (CERs) play roles in signal transduction and cell regulation, CERs of human hair might be responsible for apoptosis during keratinization, in addition to their structural barrier and water-holding functions. Although, we previously developed a method for comprehensive profiling of the CERs in hair, that method was too insensitive to quantitatively characterize the CERs in a small amount of hair samples. The aim of this study was to develop a novel method for the highly sensitive determination of the diverse CERs. The method developed is negative ion electrospray ionization mass spectrometry (ESI-MS) coupled to reversed-phase high-performance liquid chromatography (RP-HPLC) using methanol containing 10 mM ammonium acetate as a mobile phase. By this method, 48 peaks derived from 73 kinds of CERs were simultaneously determined in selected ion monitoring measurement using one calibration line of the standard N-palmitoyl dihydrosphigosine, based on extremely small differences in the molar responses among different species of CERs, followed by the calculation of the actual levels using corrections for (13)C and (2)H effects. This method had extremely high sensitivity as indicated in the limit of quantification being in the femtomolar range. Other quantitative validation data, such as reproducibility, linearity and recoveries, were all sufficient. The quantitative levels of CERs determined by RP-HPLC-ESI-MS were comparable with those determined by thin-layer chromatography. This method was successfully applied to the characterization of levels of CERs in only 1-mm pieces derived from a single hair fiber and revealed the presence of interindividual and intraindividual variations of the CER composition. This RP-HPLC-ESI-MS method can be a powerful tool for future research on physicochemical and physiological roles of CERs in hair.
Collapse
Affiliation(s)
- Yoshinori Masukawa
- Tochigi Research Laboratories, Kao Corporation, Ichikai, Haga, Tochigi 321-3497, Japan.
| | | |
Collapse
|
10
|
Masukawa Y, Tsujimura H. Highly sensitive determination of N-acyl dihydrosphingosine using liquid chromatography–electrospray ionization mass spectrometry. J Chromatogr A 2006; 1127:52-9. [PMID: 16781721 DOI: 10.1016/j.chroma.2006.05.070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2006] [Revised: 05/20/2006] [Accepted: 05/24/2006] [Indexed: 11/16/2022]
Abstract
An analytical method for highly sensitive determination of four N-acyl dihydrosphingosines (NDSs) of all ceramides (CERs) in human hair, such as N-palmitoyl dihydrosphingosine (N16DS18), N-stearoyl dihydrosphingosine (N18DS18), N-lignocerol dihydrosphingosine (N24DS18) and N-nervonoyl dihydrosphingosine (N24:1DS18), has been developed using electrospray ionization (ESI) MS connected to reversed-phase LC with selected ion monitoring (SIM). The selection of negative ESI under optimal conditions of in-source collision-induced dissociation was determined based on the simplicity of molecular-related ions and their intensities. Of all ESI-MS parameters tested, the flow of dry nitrogen gas strongly affected the sensitivity of molecular-related ions, particularly in N24DS18 and N24:1DS18, while the capillary voltage elicited significantly different effects on the signal-to-noise ratio between N16DS18/N18DS18 and N24DS18/N24:1DS18. This newly developed method to determine the NDSs is the most sensitive of all existing methods, as shown in the limits of detection and quantification being in the range of 0.06-0.29 and 0.18-0.98fmol, respectively. The linearity, precision and accuracy were all sufficient to determine the NDSs in ca. 0.1mg of a hair fiber ( approximately 1cm in length). This method has been used to characterize levels of the NDSs from the proximal root end to the distal tip of each of six hair fibers obtained from two different females. Characteristic changes were observed between both females as well as among fibers derived from each female. This method will be useful not only for clarifying the roles of the CERs in human hair but also for investigating the physiology of CERs relevant to signal transduction and cell regulation in human cells/tissues.
Collapse
Affiliation(s)
- Yoshinori Masukawa
- Analytical Research Center, Tochigi Research Laboratories, Kao Corporation, 2606 Akabane, Ichikai-machi, Haga, Tochigi 321-3497, Japan.
| | | |
Collapse
|
11
|
Masukawa Y, Tsujimura H, Narita H. Liquid chromatography-mass spectrometry for comprehensive profiling of ceramide molecules in human hair. J Lipid Res 2006; 47:1559-71. [PMID: 16639079 DOI: 10.1194/jlr.d600007-jlr200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ceramides (CERs) play key roles in signal transduction and cell regulation, probably during the keratinization of human hair. Current methods using mass spectrometry (MS), however, are not sufficient to allow the comprehensive analysis of CER molecules, including isobaric and isomeric CERs. Therefore, a method for the comprehensive profiling of CERs was developed. The method developed is based on reversed-phase liquid chromatography (RPLC) coupled to atmospheric pressure chemical ionization (APCI)-MS. Comprehensive identification and profiling of CERs is achieved using two sets of multimass chromatograms obtained from two channel detections that monitor both molecular-related and sphingoid-related ions under two different in-source collision-induced dissociation conditions and using retention times obtained from RPLC. The application of this method revealed that human hair contains 73 species of CER molecules, which were all corroborated by structural analysis using tandem mass spectrometry. The results further revealed that the composition is characterized by predominant molecules consisting of even carbon atom-containing saturated/unsaturated nonhydroxy or alpha-hydroxy fatty acids and C(18) dihydrosphingosine, a minor but distinct content of isobaric/isomeric and odd chain-containing CERs. This successfully developed RPLC-APCI-MS technique allows the comprehensive profiling of CER molecules in hair for the investigation of their physicochemical and physiological roles.
Collapse
Affiliation(s)
- Yoshinori Masukawa
- Tochigi Research Laboratories, Kao Corporation, Haga, Tochigi 321-0962, Japan.
| | | | | |
Collapse
|
12
|
Camera E, Picardo M, Presutti C, Catarcini P, Fanali S. Separation and characterisation of sphingoceramides by high-performance liquid chromatography-electrospray ionisation mass spectrometry. J Sep Sci 2004; 27:971-6. [PMID: 15352714 DOI: 10.1002/jssc.200301712] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We developed a simple and reliable analytical method for the quantification and the characterization of ceramides extracted from biological samples by high-performance liquid chromatography (HPLC) coupled to electrospray ionisation tandem mass spectrometry (ESI/MS/MS). The chromatographic separation of analytes was carried out in a RP8 column, eluting with a methanol-water mixture in gradient elution mode. The separated lipids were detected by total ion monitoring and characterised by MS/MS spectra; quantitative analysis was performed by integrating the extracted ion peaks obtained in the negative ion mode. Good repeatability was obtained for retention time (0.3-2%), peak area ratio (A(S)/A(IS), 2-8%), as well as limit of detection (LOD, 5-26 pg) and quantification (LOQ, 13-53 pg). The method was validated for the analysis of N-palmitoyl-D-erythro-sphingosine (Cer16), N-stearoyl-D-erythro-sphingosine (Cer18), N-tetracosanoyl-D-erythro-sphingosine (N24:0, lignoceric ceramide, Cer24:0), and N-tetracos-15'-enoyl-D-erythro-sphingosine (N24:1, nervonic ceramide, Cer24:1), giving good results. Lipid mixtures, extracted from skin and epidermal cells, were analysed for their content of the studied ceramides.
Collapse
Affiliation(s)
- Emanuela Camera
- Istituto Dermatologico S. Gallicano (IRCCS), Via S. Gallicano 25/A, 00153 Roma, Italy
| | | | | | | | | |
Collapse
|
13
|
John Wiley & Sons, Ltd.. Current literature in mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2003; 38:588-595. [PMID: 12794882 DOI: 10.1002/jms.408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
|