Charville GW, Hetrick EM, Geer CB, Schoenfisch MH. Reduced bacterial adhesion to fibrinogen-coated substrates via nitric oxide release.
Biomaterials 2008;
29:4039-44. [PMID:
18657857 DOI:
10.1016/j.biomaterials.2008.07.005]
[Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Accepted: 07/02/2008] [Indexed: 11/25/2022]
Abstract
The ability of nitric oxide (NO)-releasing xerogels to reduce fibrinogen-mediated adhesion of Staphylococcus aureus, Staphylococcus epidermidis, and Escherichia coli is described. A negative correlation was observed between NO surface flux and bacterial adhesion for each species tested. For S. aureus and E. coli, reduced adhesion correlated directly with NO flux from 0 to 30 pmol cm(-2)s(-1). A similar dependence for S. epidermidis was evident from 18 to 30 pmol cm(-2)s(-1). At a NO flux of 30 pmol cm(-2)s(-1), surface coverage of S. aureus, S. epidermidis, and E. coli was reduced by 96, 48, and 88%, respectively, compared to non-NO-releasing controls. Polymeric NO release was thus demonstrated to be an effective approach for significantly reducing fibrinogen-mediated adhesion of both gram-positive and gram-negative bacteria in vitro, thereby illustrating the advantage of active NO release as a strategy for inhibiting bacterial adhesion in the presence of pre-adsorbed protein.
Collapse