1
|
Giordani S, Marassi V, Placci A, Zattoni A, Roda B, Reschiglian P. Field-Flow Fractionation in Molecular Biology and Biotechnology. Molecules 2023; 28:6201. [PMID: 37687030 PMCID: PMC10488451 DOI: 10.3390/molecules28176201] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/08/2023] [Accepted: 08/15/2023] [Indexed: 09/10/2023] Open
Abstract
Field-flow fractionation (FFF) is a family of single-phase separative techniques exploited to gently separate and characterize nano- and microsystems in suspension. These techniques cover an extremely wide dynamic range and are able to separate analytes in an interval between a few nm to 100 µm size-wise (over 15 orders of magnitude mass-wise). They are flexible in terms of mobile phase and can separate the analytes in native conditions, preserving their original structures/properties as much as possible. Molecular biology is the branch of biology that studies the molecular basis of biological activity, while biotechnology deals with the technological applications of biology. The areas where biotechnologies are required include industrial, agri-food, environmental, and pharmaceutical. Many species of biological interest belong to the operational range of FFF techniques, and their application to the analysis of such samples has steadily grown in the last 30 years. This work aims to summarize the main features, milestones, and results provided by the application of FFF in the field of molecular biology and biotechnology, with a focus on the years from 2000 to 2022. After a theoretical background overview of FFF and its methodologies, the results are reported based on the nature of the samples analyzed.
Collapse
Affiliation(s)
- Stefano Giordani
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, 40126 Bologna, Italy (V.M.)
| | - Valentina Marassi
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, 40126 Bologna, Italy (V.M.)
- byFlow srl, 40129 Bologna, Italy
| | - Anna Placci
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, 40126 Bologna, Italy (V.M.)
| | - Andrea Zattoni
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, 40126 Bologna, Italy (V.M.)
- byFlow srl, 40129 Bologna, Italy
| | - Barbara Roda
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, 40126 Bologna, Italy (V.M.)
- byFlow srl, 40129 Bologna, Italy
| | - Pierluigi Reschiglian
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, 40126 Bologna, Italy (V.M.)
- byFlow srl, 40129 Bologna, Italy
| |
Collapse
|
2
|
Mélin C, Perraud A, Bounaix Morand du Puch C, Loum E, Giraud S, Cardot P, Jauberteau MO, Lautrette C, Battu S, Mathonnet M. Sedimentation field flow fractionation monitoring of in vitro enrichment in cancer stem cells by specific serum-free culture medium. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 963:40-6. [PMID: 24927420 DOI: 10.1016/j.jchromb.2014.05.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 05/13/2014] [Accepted: 05/16/2014] [Indexed: 12/14/2022]
Abstract
The development of methods to enrich cell populations for cancer stem cells (CSC) is urgently needed to help understand tumor progression, therapeutic escape and to evaluate new drugs, in particular for colorectal cancer (CRC). In this work, we describe the in vitro use of OncoMiD for colon, a CRC-specific primary cell culture medium, to enrich CRC cell lines in CSC. Sedimentation field flow fractionation (SdFFF) was used to monitor the evolution of subpopulations composition. In these models, medium induced a loss of adherence properties associated with a balance between proliferation and apoptosis rates and, more important, an increased expression of relevant CSC markers, leading to specific SdFFF elution profile changes.
Collapse
Affiliation(s)
- Carole Mélin
- Université de Limoges, Institut 145 GEIST, EA 3842 "Homéostasie cellulaire et pathologies", Faculté de Médecine, 2 rue du Dr Marcland, 87025 Limoges Cedex, France
| | - Aurélie Perraud
- Université de Limoges, Institut 145 GEIST, EA 3842 "Homéostasie cellulaire et pathologies", Faculté de Médecine, 2 rue du Dr Marcland, 87025 Limoges Cedex, France; CHU de Limoges, Service de chirurgie digestive générale et endocrinienne, 2 rue Martin Luther King, 87042 Limoges Cedex, France
| | | | - Elodie Loum
- Oncomedics, 1 Avenue d'Ester, 87069 Limoges, France
| | | | - Philippe Cardot
- Université de Limoges, Institut 145 GEIST, EA 3842 "Homéostasie cellulaire et pathologies", Faculté de Médecine, 2 rue du Dr Marcland, 87025 Limoges Cedex, France; Université de Limoges, Institut 145 GEIST, EA 3842 "Homéostasie cellulaire et pathologies", Faculté de Pharmacie, Laboratoire de Chimie Analytique et Bromatologie, 87025 Limoges Cedex, France
| | - Marie-Odile Jauberteau
- Université de Limoges, Institut 145 GEIST, EA 3842 "Homéostasie cellulaire et pathologies", Faculté de Médecine, 2 rue du Dr Marcland, 87025 Limoges Cedex, France
| | | | - Serge Battu
- Université de Limoges, Institut 145 GEIST, EA 3842 "Homéostasie cellulaire et pathologies", Faculté de Médecine, 2 rue du Dr Marcland, 87025 Limoges Cedex, France; Université de Limoges, Institut 145 GEIST, EA 3842 "Homéostasie cellulaire et pathologies", Faculté de Pharmacie, Laboratoire de Chimie Analytique et Bromatologie, 87025 Limoges Cedex, France.
| | - Muriel Mathonnet
- Université de Limoges, Institut 145 GEIST, EA 3842 "Homéostasie cellulaire et pathologies", Faculté de Médecine, 2 rue du Dr Marcland, 87025 Limoges Cedex, France; CHU de Limoges, Service de chirurgie digestive générale et endocrinienne, 2 rue Martin Luther King, 87042 Limoges Cedex, France
| |
Collapse
|
3
|
Mélin C, Lacroix A, Lalloué F, Pothier A, Zhang LY, Perraud A, Dalmay C, Lautrette C, Jauberteau MO, Cardot P, Mathonnet M, Battu S. Improved sedimentation field-flow fractionation separation channel for concentrated cellular elution. J Chromatogr A 2013; 1302:118-24. [DOI: 10.1016/j.chroma.2013.05.067] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Revised: 05/27/2013] [Accepted: 05/28/2013] [Indexed: 01/18/2023]
Affiliation(s)
- Carole Mélin
- Université de Limoges, Institut 145 GEIST, EA 3842 Homéostasie Cellulaire et Pathologies, Faculté de Médecine, 2 rue du Dr Marcland, 87025 Limoges Cedex, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Sarrazy V, Vedrenne N, Bordeau N, Billet F, Cardot P, Desmoulière A, Battu S. Fast astrocyte isolation by sedimentation field flow fractionation. J Chromatogr A 2013; 1289:88-93. [DOI: 10.1016/j.chroma.2013.03.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 02/27/2013] [Accepted: 03/01/2013] [Indexed: 01/03/2023]
|
5
|
Mélin C, Perraud A, Akil H, Jauberteau MO, Cardot P, Mathonnet M, Battu S. Cancer stem cell sorting from colorectal cancer cell lines by sedimentation field flow fractionation. Anal Chem 2012; 84:1549-56. [PMID: 22236375 DOI: 10.1021/ac202797z] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recently, cancer stem cells (CSCs) have been identified in many types of cancers, such as colorectal cancer (CRC). CSCs seem to be involved in initiation, growth, and tumor metastasis, as well as in radio- and chemotherapy failures. CSCs appears as new biological targets for cancer therapy, requiring the development of noninvasive cell sorting methods. In this study, we used sedimentation field flow fractionation (SdFFF) to prepare enriched populations of CSCs from eight cell lines corresponding to different CRC grades. On the basis of phenotypic and functional characterizations, "hyperlayer" elution resulted in a fraction overexpressing CSC markers (CD44, CD166, EpCAM) for all cell lines. CSCs were eluted in the last fraction for seven out of eight cell lines, but in the first for HCT116. These results suggest, according to the literature, that two different pools of CSCs exist, quiescent and activated, which can both be sorted by SdFFF. Moreover, according to CSC properties, enriched fractions are able to form colonies.
Collapse
Affiliation(s)
- Carole Mélin
- Institut 145 GEIST, EA 3842 Homéostasie Cellulaire et Pathologies, Faculté de Médecine, Université de Limoges, 2 rue du Dr Marcland, 87025 Limoges Cedex, France
| | | | | | | | | | | | | |
Collapse
|
6
|
Investigating the relationship between cell cycle stage and diosgenin-induced megakaryocytic differentiation of HEL cells using sedimentation field-flow fractionation. Anal Bioanal Chem 2010; 398:1273-83. [PMID: 20714892 DOI: 10.1007/s00216-010-4062-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 07/21/2010] [Accepted: 07/22/2010] [Indexed: 10/19/2022]
Abstract
Differentiation therapy could be one strategy for stopping cancer cell proliferation. A plant steroid, diosgenin, is known to induce megakaryocytic differentiation in human erythroleukemia (HEL) cells. In recent studies, the use of sedimentation field-flow fractionation (SdFFF) allowed the preparation of subpopulations that may differ in regard to sensitivity to differentiation induction. The specific goal of this study was to determine the relationship between cell cycle stage and sensitivity to megakaryocytic differentiation induction of HEL cells. After first confirming the capacity of diosgenin to specifically select targets, hyperlayer SdFFF cell sorting was used to prepare fractions according to cell cycle position from crude HEL cells. The sensitivities of these fractions to diosgenin-induced differentiation were then tested. The coupling of SdFFF cell separation to imaging flow cytometry showed that G1-phase cells were more sensitive to differentiation induction than S/G2M-phase cells, confirming the relationship between cell status at the start of induction, the extent of the biological event, and the potential of SdFFF in cancer research.
Collapse
|
7
|
Sedimentation field-flow fractionation separation of proliferative and differentiated subpopulations during Ca2+-induced differentiation in HaCaT cells. J Chromatogr B Analyt Technol Biomed Life Sci 2010; 878:1051-8. [DOI: 10.1016/j.jchromb.2010.03.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 03/05/2010] [Accepted: 03/09/2010] [Indexed: 11/22/2022]
|
8
|
Gascoyne PRC. Dielectrophoretic-field flow fractionation analysis of dielectric, density, and deformability characteristics of cells and particles. Anal Chem 2010; 81:8878-85. [PMID: 19791772 DOI: 10.1021/ac901470z] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Dielectrophoretic field-flow fractionation (DEP-FFF) has been used to discriminate between particles and cells based on their dielectric and density properties. However, hydrodynamic lift forces (HDLF) at flow rates needed for rapid separations were not accounted for in the previous theoretical treatment of the approach. Furthermore, no method was developed to isolate particle or cell physical characteristics directly from DEP-FFF elution data. An extended theory of DEP-FFF is presented that accounts for HDLF. With the use of DS19 erythroleukemia cells as model particles with frequency-dependent dielectric properties, it is shown that the revised theory accounts for DEP-FFF elution behavior over a wide range of conditions and is consistent with sedimentation-FFF when the DEP force is zero. Conducting four elution runs under specified conditions, the theory allows for the derivation of the cell density distribution and provides good estimates of the distributions of the dielectric properties of the cells and their deformability characteristics that affect HDLF. The approach allows for rapid profiling of the biophysical properties of cells, the identification and characterization of subpopulations, and the design of optimal DEP-FFF separation conditions. The extended DEP-FFF theory is widely applicable, and the parameter measurement methods may be adapted easily to other types of particles.
Collapse
Affiliation(s)
- Peter R C Gascoyne
- Department of Imaging Physics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA.
| |
Collapse
|
9
|
Gravitational field-flow fractionation of human hemopoietic stem cells. J Chromatogr A 2009; 1216:9081-7. [DOI: 10.1016/j.chroma.2009.07.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Revised: 07/01/2009] [Accepted: 07/14/2009] [Indexed: 11/30/2022]
|
10
|
Bégaud-Grimaud G, Battu S, Liagre B, Beneytout J, Jauberteau M, Cardot P. Development of a downscale sedimentation field flow fractionation device for biological event monitoring. J Chromatogr A 2009; 1216:9125-33. [PMID: 19732901 DOI: 10.1016/j.chroma.2009.08.042] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Revised: 07/18/2009] [Accepted: 08/10/2009] [Indexed: 10/20/2022]
|
11
|
Field-flow fractionation in bioanalysis: A review of recent trends. Anal Chim Acta 2009; 635:132-43. [DOI: 10.1016/j.aca.2009.01.015] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2008] [Revised: 01/08/2009] [Accepted: 01/09/2009] [Indexed: 11/23/2022]
|
12
|
Choi S, Song S, Choi C, Park JK. Hydrophoretic Sorting of Micrometer and Submicrometer Particles Using Anisotropic Microfluidic Obstacles. Anal Chem 2008; 81:50-5. [DOI: 10.1021/ac801720x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sungyoung Choi
- Department of Bio and Brain Engineering, KAIST, 335 Gwahangno, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Seungjeong Song
- Department of Bio and Brain Engineering, KAIST, 335 Gwahangno, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Chulhee Choi
- Department of Bio and Brain Engineering, KAIST, 335 Gwahangno, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Je-Kyun Park
- Department of Bio and Brain Engineering, KAIST, 335 Gwahangno, Yuseong-gu, Daejeon 305-701, Republic of Korea
| |
Collapse
|
13
|
Sanz R, Galceran MT, Puignou L. Determination of Viable Yeast Cells by Gravitational Field-Flow Fractionation with Fluorescence Detection. Biotechnol Prog 2008; 20:613-8. [PMID: 15059009 DOI: 10.1021/bp034278h] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Vinification processing is largely related to yeast performance and depends on the initial cell viability. To optimize the quality of wine fermentation, control of the yeast quality is mandatory. The present paper describes a new method using gravitational field flow fractionation (GrFFF) with fluorescence detection for the determination of yeast cell viability before the fermentation process. A GrFFF calibration procedure was developed using commercial yeast to prepare standards of viable cells and propidium iodide (PI) as fluorescent probe for nonviable cells. The suitability of the new method was tested with several commercial yeast strains with a g/L content ranging from 1 to 3. The validation of the method was performed by comparing GrFFF viability values with those obtained using Coulter counter and flow cytometry techniques.
Collapse
Affiliation(s)
- R Sanz
- Departament de Química Analítica, Facultat de Química, Universitat de Barcelona, 1-11, Martí i Franquès, E-08028 Barcelona, Spain
| | | | | |
Collapse
|
14
|
Human lymphocyte sorting by gravitational field-flow fractionation. Anal Bioanal Chem 2008; 392:137-45. [DOI: 10.1007/s00216-008-2271-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2008] [Revised: 06/24/2008] [Accepted: 06/27/2008] [Indexed: 10/21/2022]
|
15
|
Léger DY, Battu S, Liagre B, Cardot PJP, Beneytout JL. Sedimentation field flow fractionation to study human erythroleukemia cell megakaryocytic differentiation after short period diosgenin induction. J Chromatogr A 2007; 1157:309-20. [PMID: 17499257 DOI: 10.1016/j.chroma.2007.04.051] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Revised: 04/12/2007] [Accepted: 04/18/2007] [Indexed: 11/25/2022]
Abstract
Anti-cancer differentiation therapy could be one strategy to stop cancer cell proliferation. We propose a new sedimentation field flow fractionation (SdFFF) cell separation application in the field of cancer research. It concerns the study of megakaryocytic differentiation processes after a short exposure to an inducting agent (diosgenin). Washout process and early dual SdFFF separation--removing the influence of diosgenin and decreasing the influence of undifferentiated cells--resulted in the preparation of an enriched population to study the mechanism and kinetics of megakaryocytic differentiation. A short exposure to diosgenin was able to induce complete differentiation leading to maximal maturation which ended naturally after 192h incubation without the influence of a secondary effect of diosgenin. The study of isolated undifferentiated cells also showed that no resistance to diosgenin was observed. This result suggested different sensitivities to differentiation induction, and SdFFF cell separation would be of great interest to explore this phenomena.
Collapse
Affiliation(s)
- D Y Léger
- Laboratoire de Biochimie, EA 4021 Biomolécules et Thérapies Anti-tumorales, Université de Limoges, Faculté de Pharmacie, 2 rue du Dr Marcland, 87025 Limoges Cedex, France
| | | | | | | | | |
Collapse
|
16
|
Bégaud-Grimaud G, Battu S, Liagre B, Léger DY, Beneytout JL, Cardot PJP. Pre-apoptotic sub-population cell sorting from diosgenin apoptosis induced 1547 cells by Sedimentation Field-Flow Fractionation. J Chromatogr A 2006; 1128:194-202. [PMID: 16828787 DOI: 10.1016/j.chroma.2006.06.065] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Revised: 06/09/2006] [Accepted: 06/14/2006] [Indexed: 10/24/2022]
Abstract
Apoptosis is one of the most important phenomena in cell biology. Pre-apoptotic cells, defined as cells engaged in early stages of apoptosis, could be used as a cellular tool to study apoptosis pathways. The human 1547 osteosarcoma cell line and diosgenin (a plant steroid) association was selected as an in vitro cellular apoptosis model. In a previous study, using this model, we demonstrated that SdFFF monitored apoptosis induction as early as 6h after incubation. In this study, we investigated the capacity of Sedimentation Field-Flow Fractionation (SdFFF) to sort an enriched population of pre-apoptotic cells from 1547 cells incubated for 6 h with 40 microM diosgenin. In that way, two different separation devices which differed especially in channel thickness, 125 and 175 microm, were used and compared. Results showed, for the first time, that SdFFF is an effective method to obtain an enriched pre-apoptotic sub-population. These results suggest, as a new application, that SdFFF could be an included tool in the study of apoptotic mechanisms or the kinetic action of apoptotic drugs.
Collapse
Affiliation(s)
- G Bégaud-Grimaud
- Laboratoire de Chimie Analytique et Bromatologie, EA 3842, Homéostasie Cellulaire et Pathologies, Université de Limoges, Faculté de Pharmacie, 2 rue du Docteur Marcland, 87025 Limoges Cedex, France
| | | | | | | | | | | |
Collapse
|
17
|
Léger DY, Battu S, Liagre B, Beneytout JL, Cardot PJP. Megakaryocyte cell sorting from diosgenin-differentiated human erythroleukemia cells by sedimentation field-flow fractionation. Anal Biochem 2006; 355:19-28. [PMID: 16806034 DOI: 10.1016/j.ab.2006.05.033] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2005] [Accepted: 05/30/2006] [Indexed: 11/20/2022]
Abstract
Anticancer differentiation therapy could be one strategy to stop cancer cell proliferation. Human erythroleukemia (HEL) cell line, incubated with 10 microM diosgenin, underwent megakaryocytic differentiation. Thus, the association diosgenin/HEL could be used as a model of chemically induced cellular differentiation and anticancer treatment. The goal of this work was to determine the capacity of sedimentation field-flow fractionation (SdFFF) to sort megakaryocytic differentiated cells. SdFFF cell sorting was associated with cellular characterization methods to calibrate specific elution profiles. As demonstrated by cell size measurement methods, cellular morphology, ploidy, and phenotype, we obtained an enriched, sterile, viable, and functional fraction of megakaryocytic cells. Thus, SdFFF is proposed as a routine method to prepare differentiated cells that will be further used to better understand the megakaryocytic differentiation process.
Collapse
Affiliation(s)
- D Y Léger
- Laboratoire de Biochimie, EA 4021 "Biomolécules et Thérapies Anti-tumorales," Université de Limoges, Faculté de Pharmacie, 87025 Limoges Cedex, France
| | | | | | | | | |
Collapse
|
18
|
Reschiglian P, Zattoni A, Roda B, Michelini E, Roda A. Field-flow fractionation and biotechnology. Trends Biotechnol 2005; 23:475-83. [PMID: 16061297 DOI: 10.1016/j.tibtech.2005.07.008] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2005] [Revised: 05/09/2005] [Accepted: 07/13/2005] [Indexed: 11/28/2022]
Abstract
The gentle separation mechanism has made field-flow fractionation particularly suited to samples of biotechnological interest, from proteins and nucleic acids to viruses, subcellular units and whole cells. Recent progress in field-flow fractionation technology, as well as the development of coupled techniques combining field-flow fractionation capabilities with the specificity and sensitivity of well-established analytical methods, opens up new biotechnological applications for field-flow fractionation. The most recent appealing applications include: sorting and fingerprinting of bacteria for whole-cell vaccine production; noninvasive and tagless sorting of immature and stem cells; separation of intact proteins and enzymes in top-down proteomics; and the development of flow-assisted, multianalyte immunoassays using nano- and micron-sized particles with immobilized biomolecules.
Collapse
Affiliation(s)
- Pierluigi Reschiglian
- Department of Chemistry G. Ciamician, University of Bologna, Via Selmi 2, I-40126 Bologna, Italy
| | | | | | | | | |
Collapse
|
19
|
Roda B, Cioffi N, Ditaranto N, Zattoni A, Casolari S, Melucci D, Reschiglian P, Sabbatini L, Valentini A, Zambonin PG. Biocompatible channels for field-flow fractionation of biological samples: correlation between surface composition and operating performance. Anal Bioanal Chem 2005; 381:639-46. [PMID: 15702313 DOI: 10.1007/s00216-004-2860-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2004] [Revised: 09/10/2004] [Accepted: 09/17/2004] [Indexed: 11/26/2022]
Abstract
Biocompatible methods capable of rapid purification and fractionation of analytes from complex natural matrices are increasingly in demand, particularly at the forefront of biotechnological applications. Field-flow fractionation is a separation technique suitable for nano-sized and micro-sized analytes among which bioanalytes are an important family. The objective of this preliminary study is to start a more general approach to field-flow fractionation for bio-samples by investigation of the correlation between channel surface composition and biosample adhesion. For the first time we report on the use of X-ray photoelectron spectroscopy (XPS) to study the surface properties of channels of known performance. By XPS, a polar hydrophobic environment was found on PVC material commonly used as accumulation wall in gravitational field-flow fractionation (GrFFF), which explains the low recovery obtained when GrFFF was used to fractionate a biological sample such as Staphylococcus aureus. An increase in separation performance was obtained first by conditioning the accumulation wall with bovine serum albumin and then by using the ion-beam sputtering technique to cover the GrFFF channel surface with a controlled inert film. XPS analysis was also employed to determine the composition of membranes used in hollow-fiber flow field-flow fractionation (HF FlFFF). The results obtained revealed homogeneous composition along the HF FlFFF channel both before and after its use for fractionation of an intact protein such as ferritin.
Collapse
Affiliation(s)
- Barbara Roda
- Dipartimento di Chimica G. Ciamician, Università di Bologna, Via Selmi 2, 40126, Bologna, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Léger DY, Liagre B, Cardot PJP, Beneytout JL, Battu S. Diosgenin dose-dependent apoptosis and differentiation induction in human erythroleukemia cell line and sedimentation field-flow fractionation monitoring. Anal Biochem 2004; 335:267-78. [PMID: 15556566 DOI: 10.1016/j.ab.2004.09.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2004] [Indexed: 11/24/2022]
Abstract
To limit or stop cancer spreading, one of the most prevalent strategies is to induce cancer cell death. Differentiation therapy and apoptosis induction are two ways to achieve this goal. Sedimentation field-flow fractionation (SdFFF) has been described as an effective tool for cell separation, respecting integrity and viability. Because SdFFF takes advantage of intrinsic properties of eluted cells (size, density, shape), we studied the capacity of SdFFF to monitor specific biophysical modifications that occurred during cellular apoptosis or differentiation induction. Then, we used, as an in vitro cellular model of apoptosis and differentiation, diosgenin dose-dependent induction in the polyvalent human erythroleukemia cell line. Two other chemicals were used: phorbol myristate acetate (differentiation inducer) and staurosporine (apoptosis inducer). Our results demonstrated a correlation between SdFFF elution profile changes and induction of effective biological processes. Thus, after acquisition of a reference profile, SdFFF could be used alone to follow chemically induced biological events, suggesting many different applications such as testing series of molecules, evaluation of new cellular/biological models used in different life science fields, or sorting purified populations with the aim of better understanding mechanisms of induced cellular events.
Collapse
Affiliation(s)
- David Yannick Léger
- Laboratoire de Biochimie, EA 1085 Biomolécules et cibles cellulaires tumorales, Université de Limoges, Faculté de Pharmacie, 2 rue du Dr Marcland, 87025 Limoges Cedex, France
| | | | | | | | | |
Collapse
|
21
|
Guglielmi L, Battu S, Le Bert M, Faucher JL, Cardot PJP, Denizot Y. Mouse Embryonic Stem Cell Sorting for the Generation of Transgenic Mice by Sedimentation Field-Flow Fractionation. Anal Chem 2004; 76:1580-5. [PMID: 15018554 DOI: 10.1021/ac030218e] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mouse embryonic stem (ES) cells are an important tool for generation of transgenic mice and genetically modified mice. A rapid and efficient separation of ES cells that respects cell integrity, viability, and their developmental potential while also allowing purified ES fraction collection under sterile conditions might be of great interest to facilitate the generation of chimeric animals. In this study, we demonstrated for the first time the effectiveness of a sedimentation field-flow fractionation (SdFFF) cell sorter to provide, with a characteristic DNA content, a purified ES cell fraction and with a high in vivo developmental potential to prepare transgenic mice by generation of chimeras having a high percentage of chimerism.
Collapse
Affiliation(s)
- L Guglielmi
- Laboratoire de Chimie Analytique et Bromatologie, Faculté de Pharmacie, Université de Limoges, 2 rue du Dr Marcland, 87025 Limoges Cedex, France
| | | | | | | | | | | |
Collapse
|