1
|
Walker MG, Mendez CG, Ho AN, Czarny RS, Rappé AK, Ho PS. Design of a halogen bond catalyzed DNA endonuclease. Proc Natl Acad Sci U S A 2025; 122:e2500099122. [PMID: 40168119 PMCID: PMC12002254 DOI: 10.1073/pnas.2500099122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 02/27/2025] [Indexed: 04/03/2025] Open
Abstract
In this study, we expand the repertoire of biological catalysts by showing that a halogen bond (X-bond) can functionally replace the magnesium (Mg2+) cofactor in mouse endonuclease G (mEndoG). We mutated the metal coordinating glutamate E136 in mEndoG to a meta-halotyrosine (mXY, X = chlorine or iodine) to form a mXY-mEndoG construct that is both acid and base catalyzed. Under basic conditions, the enzyme is inactivated by the metal chelator ethylene diamine tetraacetic acid (EDTA), indicating that the halogen substituent facilitates deprotonation of the tyrosyl hydroxyl group, allowing recruitment of Mg2+ to restore the metal-dependent catalytic center. At low pHs, we observe that the mXY-mEndoG is resistant to EDTA inactivation and that the iodinated constructed is significantly more active than the chlorinated analogue. These results implicate a hydrogen bond (H-bond) enhanced X-bond as the catalyst in the mXY-mEndoG, with asparagine N103 serving as the H-bond donor that communicates the protonation state of histidine H104 to the halogen. This model is supported by mutation studies and electrostatic potential (ESP) calculations on models for the protonated and unprotonated mXY···N103···H104 system compared to the Mg2+ coordination complex of the wild type. Thus, we have designed and engineered an enzyme that utilizes an unnatural catalyst in its active site-a catalytic X-bonding enzyme, or cX-Zyme-by controverting what constitutes a metal catalyst in biochemistry.
Collapse
Affiliation(s)
- Margaret G. Walker
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO80523-1870
| | - Cesar Gustavo Mendez
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO80523-1870
| | - Alexander N. Ho
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO80523-1870
| | - Ryan S. Czarny
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO80523-1870
| | - Anthony K. Rappé
- Department of Chemistry, Colorado State University, Fort Collins, CO80523-1872
| | - Pui Shing Ho
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO80523-1870
| |
Collapse
|
2
|
Zhu HQ, Tang XL, Zheng RC, Zheng YG. Purification and Biochemical Characterization of a Tyrosine Phenol-lyase from Morganella morganii. Appl Biochem Biotechnol 2020; 192:71-84. [PMID: 32236865 DOI: 10.1007/s12010-020-03301-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/12/2020] [Indexed: 11/26/2022]
Abstract
Tyrosine phenol-lyase (TPL) is a valuable and cost-effective biocatalyst for the biosynthesis of L-tyrosine and its derivatives, which are valuable intermediates in the pharmaceutical industry. A TPL from Morganella morganii (Mm-TPL) was overexpressed in Escherichia coli and characterized. Mm-TPL was determined as a homotetramer with molecular weight of 52 kDa per subunit. Its optimal temperature and pH for β-elimination of L-tyrosine were 45 °C and pH 8.5, respectively. Mm-TPL manifested strict substrate specificity for the reverse reaction of β-elimination and ortho- and meta-substituted phenols with small steric size were preferred substrates. The enzyme showed excellent catalytic performance for synthesis of L-tyrosine, 3-fluoro-L-tyrosine, and L-DOPA with a yield of 98.1%, 95.1%, and 87.2%, respectively. Furthermore, the fed-batch bioprocess displayed space-time yields of 9.6 g L-1 h-1 for L-tyrosine and 4.2 g L-1 h-1 for 3-fluoro-L-tyrosine with a yield of 67.4 g L-1 and 29.5 g L-1, respectively. These results demonstrated the great potential of Mm-TPL for industrial application.
Collapse
Affiliation(s)
- Hang-Qin Zhu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Xiao-Ling Tang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Ren-Chao Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| |
Collapse
|
3
|
Han H, Zeng W, Du G, Chen J, Zhou J. Site-directed mutagenesis to improve the thermostability of tyrosine phenol-lyase. J Biotechnol 2020; 310:6-12. [PMID: 31926982 DOI: 10.1016/j.jbiotec.2020.01.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/16/2019] [Accepted: 01/09/2020] [Indexed: 12/29/2022]
Abstract
3,4-Dihydroxyphenyl-L-alanine (L-DOPA) is the most important antiparkinsonian drug, and tyrosine phenol-lyase (TPL)-based enzyme catalysis process is one of the most adopted methods on industrial scale production. TPL activity and stability represent the rate-limiting step in L-DOPA synthesis. Here, 25 TPL mutants were predicted, and two were confirmed as exhibiting the highest L-DOPA production and named E313W and E313M. The L-DOPA production from E313W and E313M was 47.5 g/L and 62.1 g/L, which was 110.2 % and 174.8 % higher, respectively, than that observed from wild-type (WT) TPL. The Km of E313W and E313M showed no apparent decrease, whereas the kcat of E313W and E313M improved by 45.5 % and 36.4 %, respectively, relative to WT TPL. Additionally, E313W and E313M displayed improved thermostability, a higher melting temperature, and enhanced affinity between for pyridoxal-5'-phosphate. Structural analysis of the mutants suggested increased stability of the N-terminal region via enhanced interactions between the mutated residues and H317. Application of these mutants in a substrate fed-batch strategy as whole-cell biocatalysts allows realization of a cost-efficient short fermentation period resulting in high L-DOPA yield.
Collapse
Affiliation(s)
- Hongmei Han
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Weizhu Zeng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Guocheng Du
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jian Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
4
|
Ycas PD, Wagner N, Olsen NM, Fu R, Pomerantz WCK. 2-Fluorotyrosine is a valuable but understudied amino acid for protein-observed 19F NMR. JOURNAL OF BIOMOLECULAR NMR 2020; 74:61-69. [PMID: 31760571 DOI: 10.1007/s10858-019-00290-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 11/13/2019] [Indexed: 06/10/2023]
Abstract
Incorporation of 19F into proteins allows for the study of their molecular interactions via NMR. The study of 19F labeled aromatic amino acids has largely focused on 4-,5-, or 6-fluorotryptophan, 4-fluorophenylalanine, (4,5, or 6FW) or 3-fluorotyrosine (3FY), whereas 2-fluorotyrosine (2FY) has remained largely understudied. Here we report a comparative analysis with different fluorinated amino acids. We first report the NMR chemical shift responsiveness of five aromatic amino acid mimics to changes in solvent polarity and find that the most responsive, a mimic of 3FY, has a 2.9-fold greater change in chemical shift compared to the other amino acid mimics in aprotic solvents including the 2FY mimic. We also probed the utility of 2FY for 19F NMR by measuring its NMR relaxation properties in solution and the chemical shift anisotropy (CSA) of a polycrystalline sample of the amino acid by magic angle spinning. Using protein-observed fluorine NMR (PrOF NMR), we compared the influence of 2FY and 3FY incorporation on stability and pKa perturbation when incorporated into the KIX domain of CBP/p300. Lastly, we investigated the 19F NMR response of both 2FY and 3FY-labeled proteins to a protein-protein interaction partner, MLL, and discovered that 2FY can report on allosteric interactions that are not observed with 3FY-labeling in this protein complex. The reduced perturbation to pKa and similar but reduced CSA of 2FY to 3FY supports 2FY as a suitable alternative amino acid for incorporation into large proteins for 19F NMR analysis.
Collapse
Affiliation(s)
- Peter D Ycas
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN, 55455, USA
| | - Nicole Wagner
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN, 55455, USA
| | - Noelle M Olsen
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN, 55455, USA
| | - Riqiang Fu
- National High Magnetic Field Lab, 1800 East Paul Dirac Dr., Tallahassee, FL, 32310, USA
| | - William C K Pomerantz
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
5
|
Phillips RS, Craig S, Kovalevsky A, Gerlits O, Weiss K, Iorgu AI, Heyes DJ, Hay S. Pressure and Temperature Effects on the Formation of Aminoacrylate Intermediates of Tyrosine Phenol-lyase Demonstrate Reaction Dynamics. ACS Catal 2019. [DOI: 10.1021/acscatal.9b03967] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Robert S. Phillips
- Department of Chemistry, University of Georgia, Athens, Georgia 30602 United States
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, United States
| | - Steven Craig
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, United States
| | - Andrey Kovalevsky
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6475, United States
| | - Oksana Gerlits
- Tennessee Wesleyan University, Athens, Tennessee 37303, United States
| | - Kevin Weiss
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6475, United States
| | - Andreea I. Iorgu
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, Manchester M17DN, U.K
| | - Derren J. Heyes
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, Manchester M17DN, U.K
| | - Sam Hay
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, Manchester M17DN, U.K
| |
Collapse
|
6
|
Phillips RS, Craig S. Crystal Structures of Wild-Type and F448A Mutant Citrobacter freundii Tyrosine Phenol-Lyase Complexed with a Substrate and Inhibitors: Implications for the Reaction Mechanism. Biochemistry 2018; 57:6166-6179. [PMID: 30260636 DOI: 10.1021/acs.biochem.8b00724] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tyrosine phenol-lyase (TPL; EC 4.1.99.2) is a pyridoxal 5'-phosphate-dependent enzyme that catalyzes the reversible hydrolytic cleavage of l-tyrosine to phenol and ammonium pyruvate. We have shown previously that F448A TPL has kcat and kcat/ Km values for l-tyrosine reduced by ∼104-fold [Phillips, R. S., Vita, A., Spivey, J. B., Rudloff, A. P., Driscoll, M. D., and Hay, S. (2016) ACS Catal. 6, 6770-6779]. We have now obtained crystal structures of F448A TPL and complexes with l-alanine, l-methionine, l-phenylalanine, and 3-F-l-tyrosine at 2.05-2.27 Å and the complex of wild-type TPL with l-phenylalanine at 1.8 Å. The small domain of F448A TPL, where Phe-448 is located, is more disordered in chain A than in wild-type TPL. The complexes of F448A TPL with l-alanine and l-phenylalanine are in an open conformation in both chains, while the complex with l-methionine is a 52:48 open:closed equilibrium mixture in chain A. Wild-type TPL with l-alanine is closed in chain A and open in chain B, and the complex with l-phenylalanine is a 56:44 open:closed mixture in chain A. Thus, the Phe-448 to alanine mutation affects the conformational equilibrium of open and closed active sites. The structure of the 3-F-l-tyrosine quinonoid complex of F448A TPL is unstrained and in an open conformation, with a hydrogen bond from the phenolic OH to Thr-124. These results support our previous conclusion that ground-state strain plays a critical role in the mechanism of TPL.
Collapse
|
7
|
Ren H, Wang L, Wang X, Liu X, Jiang S. Measurement of acid dissociation constants and ionic mobilities of 3-nitro-tyrosine and 3-chloro-tyrosine by capillary zone electrophoresis. J Pharm Biomed Anal 2013; 77:83-7. [DOI: 10.1016/j.jpba.2013.01.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 01/07/2013] [Accepted: 01/07/2013] [Indexed: 10/27/2022]
|
8
|
Demidkina TV, Antson AA, Faleev NG, Phillips RS, Zakomirdina LN. Spatial structure and the mechanism of tyrosine phenol-lyase and tryptophan indole-lyase. Mol Biol 2009. [DOI: 10.1134/s0026893309020101] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Mani AR, Ippolito S, Moreno JC, Visser TJ, Moore KP. The Metabolism and Dechlorination of Chlorotyrosine in Vivo. J Biol Chem 2007; 282:29114-21. [PMID: 17686770 DOI: 10.1074/jbc.m704270200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During inflammation, neutrophil- and monocyte-derived myeloperoxidase catalyzes the formation of hypochlorous acid, which can chlorinate tyrosine residues in proteins to form chlorotyrosine. However, little is known of the metabolism and disposition of chlorotyrosine in vivo. Following infusion of deuterium-labeled [D(4)]chlorotyrosine into Sprague-Dawley rats, the major urinary metabolites were identified by mass spectrometry. 3-Chloro-4-hydroxyphenylacetic acid was identified as the major chlorinated metabolite of chlorotyrosine and accounted for 3.6 +/- 0.3% of infused [D(4)]chlorotyrosine. The striking observation was that approximately 40% (39 +/- 1%) of infused [D(4)]chlorotyrosine was dechlorinated and excreted in the urine as deuterated 4-hydroxyphenylacetic acid, a major metabolite of tyrosine. 1.1 +/- 0.1% of infused [D(4)]chlorotyrosine was excreted as [D(4)]tyrosine. To determine whether protein-bound chlorotyrosine could undergo dechlorination, chlorinated albumin was incubated with liver homogenate from mutant rats, which did not synthesize albumin. There was approximately 20% decrease in the chlorotyrosine content over 1 h. This study is the first to describe the dechlorination of chlorotyrosine as the major metabolic pathway to eliminate this modified amino acid in vivo.
Collapse
Affiliation(s)
- Ali R Mani
- Department of Medicine, Royal Free & University College Medical School, University College London, London NW3 2PF, United Kingdom
| | | | | | | | | |
Collapse
|
10
|
Affiliation(s)
- James P McEvoy
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107, USA
| | | |
Collapse
|
11
|
Guillén Schlippe YV, Hedstrom L. A twisted base? The role of arginine in enzyme-catalyzed proton abstractions. Arch Biochem Biophys 2005; 433:266-78. [PMID: 15581582 DOI: 10.1016/j.abb.2004.09.018] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2004] [Revised: 09/13/2004] [Indexed: 10/26/2022]
Abstract
Arginine residues are generally considered poor candidates for the role of general bases because they are predominantly protonated at physiological pH. Nonetheless, Arg residues have recently emerged as general bases in several enzymes: IMP dehydrogenase, pectate/pectin lyases, fumarate reductase, and l-aspartate oxidase. The experimental evidence suggesting this mechanistic function is reviewed. Although these enzymes have several different folds and distinct evolutionary origins, a common structural motif is found where the critical Arg residue is solvent accessible and adjacent to carboxylate groups. The chemistry of the guanidine group suggests unique strategies to lower the pK(a) of Arg. Lastly, the presumption that general bases must be predominantly deprotonated is revisited.
Collapse
|