1
|
García-Pazo P, Fornés-Vives J, Abad AS. NoFumo+: Mobile Health App to Quit Smoking Using Cognitive-Behavioral Therapy. Nurs Res Pract 2024; 2024:8836672. [PMID: 39364181 PMCID: PMC11449556 DOI: 10.1155/2024/8836672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/09/2024] [Accepted: 09/01/2024] [Indexed: 10/05/2024] Open
Abstract
This paper describes the development and test of a smartphone application to quit smoking using cognitive behavioral therapy (CBT). The tool includes recommendations from US Clinical Practice Guidelines (USCPG), drawing on the potential of smartphones and complying with the health App (mHealth) assessment standards. The mHealth created, called NoFumo+, is structured by 4 weeks treatment, implements the USCPG 5A recommendations (ask, advise, assess, assist, and arrange) and incorporates a CBT. It also includes complementary information, monitoring of the smoking behavior, social support for users, proposals for alternative activities to smoking, and innovative gamification to encourage and reward adherence. To technical development, a multidisciplinary team was formed (healthcare, research, and software engineers) that made theoretical decisions on both technical issues and the incorporation of therapeutic techniques. The validation was carried out in two phases; the first in the laboratory by a group of experts in information and communication technologies and CBTs (n = 15) and the second, a field study with smokers (n = 10). The standards for the development of mHealth recommended by the Andalusian Healthcare Quality Agency and the App quality evaluation guidelines of the Catalonian ICT Foundation for Social Health were used as assessment protocols by the experts' panel and the smokers' group, respectively. Experts' assessment results were satisfactory and some improving changes were suggested, such as to add more gamification elements. The group of smokers rated the mHealth as 100% easy to use and effective for quit smoking and understandable by the 83.3%. They also found No Fumo + quite useful to have the information available at all times. The obtained evidence after a complete two-phased validation study, with experts and potential users, shows a mHealth with high quality and easy to use. Finally, investigation project registered in ClinicalTrials.gov with reference to this trial is registered with NCT045402004.
Collapse
Affiliation(s)
- Patricia García-Pazo
- Department of Nursing and Physiotherapy University of the Balearic Islands (UBI), Ctra. Valldemossa, km 7.5, Palma E-07122, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Ctra. Valldemossa, 79, Palma E-07120, Spain
| | - Joana Fornés-Vives
- Department of Nursing and Physiotherapy University of the Balearic Islands (UBI), Ctra. Valldemossa, km 7.5, Palma E-07122, Spain
| | - Albert Sesé Abad
- Health Research Institute of the Balearic Islands (IdISBa), Ctra. Valldemossa, 79, Palma E-07120, Spain
- Department of Psychology University of the Balearic Islands (UBI), Ctra. Valldemossa, km 7.5, Palma E-07122, Spain
| |
Collapse
|
2
|
Streck JM, Rigotti NA, Livingstone-Banks J, Tindle HA, Clair C, Munafò MR, Sterling-Maisel C, Hartmann-Boyce J. Interventions for smoking cessation in hospitalised patients. Cochrane Database Syst Rev 2024; 5:CD001837. [PMID: 38770804 PMCID: PMC11106804 DOI: 10.1002/14651858.cd001837.pub4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
BACKGROUND In 2020, 32.6% of the world's population used tobacco. Smoking contributes to many illnesses that require hospitalisation. A hospital admission may prompt a quit attempt. Initiating smoking cessation treatment, such as pharmacotherapy and/or counselling, in hospitals may be an effective preventive health strategy. Pharmacotherapies work to reduce withdrawal/craving and counselling provides behavioural skills for quitting smoking. This review updates the evidence on interventions for smoking cessation in hospitalised patients, to understand the most effective smoking cessation treatment methods for hospitalised smokers. OBJECTIVES To assess the effects of any type of smoking cessation programme for patients admitted to an acute care hospital. SEARCH METHODS We used standard, extensive Cochrane search methods. The latest search date was 7 September 2022. SELECTION CRITERIA We included randomised and quasi-randomised studies of behavioural, pharmacological or multicomponent interventions to help patients admitted to hospital quit. Interventions had to start in the hospital (including at discharge), and people had to have smoked within the last month. We excluded studies in psychiatric, substance and rehabilitation centres, as well as studies that did not measure abstinence at six months or longer. DATA COLLECTION AND ANALYSIS We used standard Cochrane methods. Our primary outcome was abstinence from smoking assessed at least six months after discharge or the start of the intervention. We used the most rigorous definition of abstinence, preferring biochemically-validated rates where reported. We used GRADE to assess the certainty of the evidence. MAIN RESULTS We included 82 studies (74 RCTs) that included 42,273 participants in the review (71 studies, 37,237 participants included in the meta-analyses); 36 studies are new to this update. We rated 10 studies as being at low risk of bias overall (low risk in all domains assessed), 48 at high risk of bias overall (high risk in at least one domain), and the remaining 24 at unclear risk. Cessation counselling versus no counselling, grouped by intensity of intervention Hospitalised patients who received smoking cessation counselling that began in the hospital and continued for more than a month after discharge had higher quit rates than patients who received no counselling in the hospital or following hospitalisation (risk ratio (RR) 1.36, 95% confidence interval (CI) 1.24 to 1.49; 28 studies, 8234 participants; high-certainty evidence). In absolute terms, this might account for an additional 76 quitters in every 1000 participants (95% CI 51 to 103). The evidence was uncertain (very low-certainty) about the effects of counselling interventions of less intensity or shorter duration (in-hospital only counselling ≤ 15 minutes: RR 1.52, 95% CI 0.80 to 2.89; 2 studies, 1417 participants; and in-hospital contact plus follow-up counselling support for ≤ 1 month: RR 1.04, 95% CI 0.90 to 1.20; 7 studies, 4627 participants) versus no counselling. There was moderate-certainty evidence, limited by imprecision, that smoking cessation counselling for at least 15 minutes in the hospital without post-discharge support led to higher quit rates than no counselling in the hospital (RR 1.27, 95% CI 1.02 to 1.58; 12 studies, 4432 participants). Pharmacotherapy versus placebo or no pharmacotherapy Nicotine replacement therapy helped more patients to quit than placebo or no pharmacotherapy (RR 1.33, 95% CI 1.05 to 1.67; 8 studies, 3838 participants; high-certainty evidence). In absolute terms, this might equate to an additional 62 quitters per 1000 participants (95% CI 9 to 126). There was moderate-certainty evidence, limited by imprecision (as CI encompassed the possibility of no difference), that varenicline helped more hospitalised patients to quit than placebo or no pharmacotherapy (RR 1.29, 95% CI 0.96 to 1.75; 4 studies, 829 participants). Evidence for bupropion was low-certainty; the point estimate indicated a modest benefit at best, but CIs were wide and incorporated clinically significant harm and clinically significant benefit (RR 1.11, 95% CI 0.86 to 1.43, 4 studies, 872 participants). Hospital-only intervention versus intervention that continues after hospital discharge Patients offered both smoking cessation counselling and pharmacotherapy after discharge had higher quit rates than patients offered counselling in hospital but not offered post-discharge support (RR 1.23, 95% CI 1.09 to 1.38; 7 studies, 5610 participants; high-certainty evidence). In absolute terms, this might equate to an additional 34 quitters per 1000 participants (95% CI 13 to 55). Post-discharge interventions offering real-time counselling without pharmacotherapy (RR 1.23, 95% CI 0.95 to 1.60, 8 studies, 2299 participants; low certainty-evidence) and those offering unscheduled counselling without pharmacotherapy (RR 0.97, 95% CI 0.83 to 1.14; 2 studies, 1598 participants; very low-certainty evidence) may have little to no effect on quit rates compared to control. Telephone quitlines versus control To provide post-discharge support, hospitals may refer patients to community-based telephone quitlines. Both comparisons relating to these interventions had wide CIs encompassing both possible harm and possible benefit, and were judged to be of very low certainty due to imprecision, inconsistency, and risk of bias (post-discharge telephone counselling versus quitline referral: RR 1.23, 95% CI 1.00 to 1.51; 3 studies, 3260 participants; quitline referral versus control: RR 1.17, 95% CI 0.70 to 1.96; 2 studies, 1870 participants). AUTHORS' CONCLUSIONS Offering hospitalised patients smoking cessation counselling beginning in hospital and continuing for over one month after discharge increases quit rates, compared to no hospital intervention. Counselling provided only in hospital, without post-discharge support, may have a modest impact on quit rates, but evidence is less certain. When all patients receive counselling in the hospital, high-certainty evidence indicates that providing both counselling and pharmacotherapy after discharge increases quit rates compared to no post-discharge intervention. Starting nicotine replacement or varenicline in hospitalised patients helps more patients to quit smoking than a placebo or no medication, though evidence for varenicline is only moderate-certainty due to imprecision. There is less evidence of benefit for bupropion in this setting. Some of our evidence was limited by imprecision (bupropion versus placebo and varenicline versus placebo), risk of bias, and inconsistency related to heterogeneity. Future research is needed to identify effective strategies to implement, disseminate, and sustain interventions, and to ensure cessation counselling and pharmacotherapy initiated in the hospital is sustained after discharge.
Collapse
Affiliation(s)
- Joanna M Streck
- Department of Psychiatry, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts (MA), USA
- Tobacco Research and Treatment Center, Division of General Internal Medicine, Department of Medicine, Massachusetts General Hospital / Harvard Medical School, Boston, Massachusetts, USA
| | - Nancy A Rigotti
- Tobacco Research and Treatment Center, Division of General Internal Medicine, Department of Medicine, Massachusetts General Hospital / Harvard Medical School, Boston, Massachusetts, USA
| | | | - Hilary A Tindle
- Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Carole Clair
- Center for Primary Care and Public Health, University of Lausanne, Lausanne, Switzerland
| | - Marcus R Munafò
- School of Experimental Psychology and MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | | | - Jamie Hartmann-Boyce
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
- Department of Health Promotion and Policy, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
3
|
Robins J, Patel I, McNeill A, Moxham J, Woodhouse A, Absalom G, Shehu B, Bruce G, Dewar A, Molloy A, Duckworth Porras S, Waring M, Stock A, Robson D. Evaluation of a hospital-initiated tobacco dependence treatment service: uptake, smoking cessation, readmission and mortality. BMC Med 2024; 22:139. [PMID: 38528543 PMCID: PMC10964535 DOI: 10.1186/s12916-024-03353-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 03/13/2024] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND The National Health Service in England aims to implement tobacco dependency treatment services in all hospitals by 2024. We aimed to assess the uptake of a new service, adapted from the Ottawa Model of Smoking Cessation, and its impact on 6-month quit rates and readmission or death at 1-year follow-up. METHODS We conducted a pragmatic service evaluation of a tobacco dependency service implemented among 2067 patients who smoked who were admitted to 2 acute hospitals in London, England, over a 12-month period from July 2020. The intervention consisted of the systematic identification of smoking status, automatic referral to tobacco dependence specialists, provision of pharmacotherapy and behavioural support throughout the hospital stay, and telephone support for 6 months after discharge. The outcomes were (i) patient acceptance of the intervention during admission, (ii) quit success at 6 months after discharge, (iii) death, or (iv) readmission up to 1 year following discharge. Multivariable logistic regression was used to estimate the impact of a range of clinical and demographic variables on these outcomes. RESULTS The majority (79.4%) of patients accepted support at the first assessment. Six months after discharge, 35.1% of successfully contacted patients reported having quit smoking. After adjustment, odds of accepting support were 51-61% higher among patients of all non-White ethnicity groups, relative to White patients, but patients of Mixed, Asian, or Other ethnicities had decreased odds of quit success (adjusted odds ratio (AOR) = 0.32, 95%CI = 0.15-0.66). Decreased odds of accepting support were associated with a diagnosis of cardiovascular disease or diabetes; however, diabetes was associated with increased odds of quit success (AOR = 1.88, 95%CI = 1.17-3.04). Intention to make a quit attempt was associated with a threefold increase in odds of quit success, and 60% lower odds of death, compared to patients who did not intend to quit. A mental health diagnosis was associated with an 84% increase in the odds of dying within 12 months. CONCLUSIONS The overall quit rates were similar to results from Ottawa models implemented elsewhere, although outcomes varied by site. Outcomes also varied according to patient demographics and diagnoses, suggesting personalised and culturally tailored interventions may be needed to optimise quit success.
Collapse
Affiliation(s)
- John Robins
- Nicotine Research Group, Department of Addictions, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| | - Irem Patel
- Integrated Care, King's College Hospital NHS Foundation Trust, Denmark Hill, London, UK
| | - Ann McNeill
- Nicotine Research Group, Department of Addictions, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | | | - Arran Woodhouse
- Integrated Respiratory Team, King's College Hospital NHS Foundation Trust, Denmark Hill, London, UK
| | - Gareth Absalom
- Integrated Local Services, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Buljana Shehu
- Integrated Local Services, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Geraldine Bruce
- Business Intelligence Unit, King's College Hospital NHS Foundation Trust, Denmark Hill, London, UK
| | - Amy Dewar
- Respiratory Medicine, Guy's and St Thomas', NHS Foundation Trust, London, UK
| | - Alanna Molloy
- Integrated Local Services, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | | | - Michael Waring
- Health Informatics, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Andrew Stock
- Integrated Respiratory Team, King's College Hospital NHS Foundation Trust, Denmark Hill, London, UK
| | - Debbie Robson
- Nicotine Research Group, Department of Addictions, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
4
|
Hartmann‐Boyce J, Chepkin SC, Ye W, Bullen C, Lancaster T, Cochrane Tobacco Addiction Group. Nicotine replacement therapy versus control for smoking cessation. Cochrane Database Syst Rev 2018; 5:CD000146. [PMID: 29852054 PMCID: PMC6353172 DOI: 10.1002/14651858.cd000146.pub5] [Citation(s) in RCA: 272] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Nicotine replacement therapy (NRT) aims to temporarily replace much of the nicotine from cigarettes to reduce motivation to smoke and nicotine withdrawal symptoms, thus easing the transition from cigarette smoking to complete abstinence. OBJECTIVES To determine the effectiveness and safety of nicotine replacement therapy (NRT), including gum, transdermal patch, intranasal spray and inhaled and oral preparations, for achieving long-term smoking cessation, compared to placebo or 'no NRT' interventions. SEARCH METHODS We searched the Cochrane Tobacco Addiction Group trials register for papers mentioning 'NRT' or any type of nicotine replacement therapy in the title, abstract or keywords. Date of most recent search is July 2017. SELECTION CRITERIA Randomized trials in people motivated to quit which compared NRT to placebo or to no treatment. We excluded trials that did not report cessation rates, and those with follow-up of less than six months, except for those in pregnancy (where less than six months, these were excluded from the main analysis). We recorded adverse events from included and excluded studies that compared NRT with placebo. Studies comparing different types, durations, and doses of NRT, and studies comparing NRT to other pharmacotherapies, are covered in separate reviews. DATA COLLECTION AND ANALYSIS Screening, data extraction and 'Risk of bias' assessment followed standard Cochrane methods. The main outcome measure was abstinence from smoking after at least six months of follow-up. We used the most rigorous definition of abstinence for each trial, and biochemically validated rates if available. We calculated the risk ratio (RR) for each study. Where appropriate, we performed meta-analysis using a Mantel-Haenszel fixed-effect model. MAIN RESULTS We identified 136 studies; 133 with 64,640 participants contributed to the primary comparison between any type of NRT and a placebo or non-NRT control group. The majority of studies were conducted in adults and had similar numbers of men and women. People enrolled in the studies typically smoked at least 15 cigarettes a day at the start of the studies. We judged the evidence to be of high quality; we judged most studies to be at high or unclear risk of bias but restricting the analysis to only those studies at low risk of bias did not significantly alter the result. The RR of abstinence for any form of NRT relative to control was 1.55 (95% confidence interval (CI) 1.49 to 1.61). The pooled RRs for each type were 1.49 (95% CI 1.40 to 1.60, 56 trials, 22,581 participants) for nicotine gum; 1.64 (95% CI 1.53 to 1.75, 51 trials, 25,754 participants) for nicotine patch; 1.52 (95% CI 1.32 to 1.74, 8 trials, 4439 participants) for oral tablets/lozenges; 1.90 (95% CI 1.36 to 2.67, 4 trials, 976 participants) for nicotine inhalator; and 2.02 (95% CI 1.49 to 2.73, 4 trials, 887 participants) for nicotine nasal spray. The effects were largely independent of the definition of abstinence, the intensity of additional support provided or the setting in which the NRT was offered. A subset of six trials conducted in pregnant women found a statistically significant benefit of NRT on abstinence close to the time of delivery (RR 1.32, 95% CI 1.04 to 1.69; 2129 participants); in the four trials that followed up participants post-partum the result was no longer statistically significant (RR 1.29, 95% CI 0.90 to 1.86; 1675 participants). Adverse events from using NRT were related to the type of product, and include skin irritation from patches and irritation to the inside of the mouth from gum and tablets. Attempts to quantitatively synthesize the incidence of various adverse effects were hindered by extensive variation in reporting the nature, timing and duration of symptoms. The odds ratio (OR) of chest pains or palpitations for any form of NRT relative to control was 1.88 (95% CI 1.37 to 2.57, 15 included and excluded trials, 11,074 participants). However, chest pains and palpitations were rare in both groups and serious adverse events were extremely rare. AUTHORS' CONCLUSIONS There is high-quality evidence that all of the licensed forms of NRT (gum, transdermal patch, nasal spray, inhalator and sublingual tablets/lozenges) can help people who make a quit attempt to increase their chances of successfully stopping smoking. NRTs increase the rate of quitting by 50% to 60%, regardless of setting, and further research is very unlikely to change our confidence in the estimate of the effect. The relative effectiveness of NRT appears to be largely independent of the intensity of additional support provided to the individual. Provision of more intense levels of support, although beneficial in facilitating the likelihood of quitting, is not essential to the success of NRT. NRT often causes minor irritation of the site through which it is administered, and in rare cases can cause non-ischaemic chest pain and palpitations.
Collapse
Affiliation(s)
- Jamie Hartmann‐Boyce
- University of OxfordNuffield Department of Primary Care Health SciencesRadcliffe Observatory QuarterWoodstock RoadOxfordUKOX2 6GG
| | | | - Weiyu Ye
- University of OxfordOxford University Clinical Academic Graduate SchoolOxfordUK
| | - Chris Bullen
- University of AucklandNational Institute for Health InnovationPrivate Bag 92019Auckland Mail CentreAucklandNew Zealand1142
| | - Tim Lancaster
- King’s College LondonGKT School of Medical EducationLondonUK
| | | |
Collapse
|
5
|
Stead LF, Perera R, Bullen C, Mant D, Hartmann-Boyce J, Cahill K, Lancaster T. Nicotine replacement therapy for smoking cessation. Cochrane Database Syst Rev 2012; 11:CD000146. [PMID: 23152200 DOI: 10.1002/14651858.cd000146.pub4] [Citation(s) in RCA: 446] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND The aim of nicotine replacement therapy (NRT) is to temporarily replace much of the nicotine from cigarettes to reduce motivation to smoke and nicotine withdrawal symptoms, thus easing the transition from cigarette smoking to complete abstinence. OBJECTIVES The aims of this review were: To determine the effect of NRT compared to placebo in aiding smoking cessation, and to consider whether there is a difference in effect for the different forms of NRT (chewing gum, transdermal patches, oral and nasal sprays, inhalers and tablets/lozenges) in achieving abstinence from cigarettes. To determine whether the effect is influenced by the dosage, form and timing of use of NRT; the intensity of additional advice and support offered to the smoker; or the clinical setting in which the smoker is recruited and treated. To determine whether combinations of NRT are more likely to lead to successful quitting than one type alone. To determine whether NRT is more or less likely to lead to successful quitting compared to other pharmacotherapies. SEARCH METHODS We searched the Cochrane Tobacco Addiction Group trials register for papers mentioning 'NRT' or any type of nicotine replacement therapy in the title, abstract or keywords. Date of most recent search July 2012. SELECTION CRITERIA Randomized trials in which NRT was compared to placebo or to no treatment, or where different doses of NRT were compared. We excluded trials which did not report cessation rates, and those with follow-up of less than six months. DATA COLLECTION AND ANALYSIS We extracted data in duplicate on the type of participants, the dose, duration and form of nicotine therapy, the outcome measures, method of randomization, and completeness of follow-up. The main outcome measure was abstinence from smoking after at least six months of follow-up. We used the most rigorous definition of abstinence for each trial, and biochemically validated rates if available. We calculated the risk ratio (RR) for each study. Where appropriate, we performed meta-analysis using a Mantel-Haenszel fixed-effect model. MAIN RESULTS We identified 150 trials; 117 with over 50,000 participants contributed to the primary comparison between any type of NRT and a placebo or non-NRT control group. The risk ratio (RR) of abstinence for any form of NRT relative to control was 1.60 (95% confidence interval [CI] 1.53 to 1.68). The pooled RRs for each type were 1.49 (95% CI 1.40 to 1.60, 55 trials) for nicotine gum; 1.64 (95% CI 1.52 to 1.78, 43 trials) for nicotine patch; 1.95 (95% CI 1.61 to 2.36, 6 trials) for oral tablets/lozenges; 1.90 (95% CI 1.36 to 2.67, 4 trials) for nicotine inhaler; and 2.02 (95% CI 1.49 to 2.73, 4 trials) for nicotine nasal spray. One trial of oral spray had an RR of 2.48 (95% CI 1.24 to 4.94). The effects were largely independent of the duration of therapy, the intensity of additional support provided or the setting in which the NRT was offered. The effect was similar in a small group of studies that aimed to assess use of NRT obtained without a prescription. In highly dependent smokers there was a significant benefit of 4 mg gum compared with 2 mg gum, but weaker evidence of a benefit from higher doses of patch. There was evidence that combining a nicotine patch with a rapid delivery form of NRT was more effective than a single type of NRT (RR 1.34, 95% CI 1.18 to 1.51, 9 trials). The RR for NRT used for a short period prior to the quit date was 1.18 (95% CI 0.98 to 1.40, 8 trials), just missing statistical significance, though the efficacy increased when we pooled only patch trials and when we removed one trial in which confounding was likely. Five studies directly compared NRT to a non-nicotine pharmacotherapy, bupropion; there was no evidence of a difference in efficacy (RR 1.01; 95% CI 0.87 to 1.18). A combination of NRT and bupropion was more effective than bupropion alone (RR 1.24; 95% CI 1.06 to 1.45, 4 trials). Adverse effects from using NRT are related to the type of product, and include skin irritation from patches and irritation to the inside of the mouth from gum and tablets. There is no evidence that NRT increases the risk of heart attacks. AUTHORS' CONCLUSIONS All of the commercially available forms of NRT (gum, transdermal patch, nasal spray, inhaler and sublingual tablets/lozenges) can help people who make a quit attempt to increase their chances of successfully stopping smoking. NRTs increase the rate of quitting by 50 to 70%, regardless of setting. The effectiveness of NRT appears to be largely independent of the intensity of additional support provided to the individual. Provision of more intense levels of support, although beneficial in facilitating the likelihood of quitting, is not essential to the success of NRT.
Collapse
Affiliation(s)
- Lindsay F Stead
- Department of Primary Care Health Sciences, University of Oxford,Oxford,UK.
| | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
BACKGROUND Smoking contributes to reasons for hospitalisation, and the period of hospitalisation may be a good time to provide help with quitting. OBJECTIVES To determine the effectiveness of interventions for smoking cessation that are initiated for hospitalised patients. SEARCH METHODS We searched the Cochrane Tobacco Addiction Group register which includes papers identified from CENTRAL, MEDLINE, EMBASE and PsycINFO in December 2011 for studies of interventions for smoking cessation in hospitalised patients, using terms including (hospital and patient*) or hospitali* or inpatient* or admission* or admitted. SELECTION CRITERIA Randomized and quasi-randomized trials of behavioural, pharmacological or multicomponent interventions to help patients stop smoking, conducted with hospitalised patients who were current smokers or recent quitters (defined as having quit more than one month before hospital admission). The intervention had to start in the hospital but could continue after hospital discharge. We excluded studies of patients admitted to facilities that primarily treat psychiatric disorders or substance abuse, studies that did not report abstinence rates and studies with follow-up of less than six months. Both acute care hospitals and rehabilitation hospitals were included in this update, with separate analyses done for each type of hospital. DATA COLLECTION AND ANALYSIS Two authors extracted data independently for each paper, with disagreements resolved by consensus. MAIN RESULTS Fifty trials met the inclusion criteria. Intensive counselling interventions that began during the hospital stay and continued with supportive contacts for at least one month after discharge increased smoking cessation rates after discharge (risk ratio (RR) 1.37, 95% confidence interval (CI) 1.27 to 1.48; 25 trials). A specific benefit for post-discharge contact compared with usual care was found in a subset of trials in which all participants received a counselling intervention in the hospital and were randomly assigned to post-discharge contact or usual care. No statistically significant benefit was found for less intensive counselling interventions. Adding nicotine replacement therapy (NRT) to an intensive counselling intervention increased smoking cessation rates compared with intensive counselling alone (RR 1.54, 95% CI 1.34 to 1.79, six trials). Adding varenicline to intensive counselling had a non-significant effect in two trials (RR 1.28, 95% CI 0.95 to 1.74). Adding bupropion did not produce a statistically significant increase in cessation over intensive counselling alone (RR 1.04, 95% CI 0.75 to 1.45, three trials). A similar pattern of results was observed in a subgroup of smokers admitted to hospital because of cardiovascular disease (CVD). In this subgroup, intensive intervention with follow-up support increased the rate of smoking cessation (RR 1.42, 95% CI 1.29 to 1.56), but less intensive interventions did not. One trial of intensive intervention including counselling and pharmacotherapy for smokers admitted with CVD assessed clinical and health care utilization endpoints, and found significant reductions in all-cause mortality and hospital readmission rates over a two-year follow-up period. These trials were all conducted in acute care hospitals. A comparable increase in smoking cessation rates was observed in a separate pooled analysis of intensive counselling interventions in rehabilitation hospitals (RR 1.71, 95% CI 1.37 to 2.14, three trials). AUTHORS' CONCLUSIONS High intensity behavioural interventions that begin during a hospital stay and include at least one month of supportive contact after discharge promote smoking cessation among hospitalised patients. The effect of these interventions was independent of the patient's admitting diagnosis and was found in rehabilitation settings as well as acute care hospitals. There was no evidence of effect for interventions of lower intensity or shorter duration. This update found that adding NRT to intensive counselling significantly increases cessation rates over counselling alone. There is insufficient direct evidence to conclude that adding bupropion or varenicline to intensive counselling increases cessation rates over what is achieved by counselling alone.
Collapse
Affiliation(s)
- Nancy A Rigotti
- Tobacco Research and Treatment Center, Department of Medicine, Massachusetts General Hospital and Harvard Medical School,Boston,Massachusetts, USA.
| | | | | | | |
Collapse
|