1
|
Repurposing of the Nootropic Drug Vinpocetine as an Analgesic and Anti-Inflammatory Agent: Evidence in a Mouse Model of Superoxide Anion-Triggered Inflammation. Mediators Inflamm 2019; 2019:6481812. [PMID: 31049025 PMCID: PMC6462340 DOI: 10.1155/2019/6481812] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 09/27/2018] [Accepted: 12/10/2018] [Indexed: 12/18/2022] Open
Abstract
Clinically active drugs for the treatment of acute pain have their prescription limited due to the significant side effects they induce. An increase in reactive oxygen species (ROS) has been linked to several conditions, including inflammation and pain processing. Therefore, new or repurposed drugs with the ability of reducing ROS-triggered responses are promising candidates for analgesic drugs. Vinpocetine is a clinically used nootropic drug with antioxidant, anti-inflammatory, and analgesic properties. However, the effects of vinpocetine have not been investigated in a model with a direct relationship between ROS, inflammation, and pain. Based on that, we aimed to investigate the effects of vinpocetine in a model of superoxide anion-induced pain and inflammation using potassium superoxide (KO2) as a superoxide anion donor to trigger inflammation and pain. In the KO2 model, vinpocetine dose-dependently reduced pain-like behaviors (spontaneous pain and hyperalgesia), paw edema, and neutrophil and mononuclear cell recruitment to the paw skin (assessed by H&E staining, fluorescence, and enzymatic assays) and to the peritoneal cavity. Vinpocetine also restored tissue endogenous antioxidant ability and Nrf2 and Ho-1 mRNA expression and reduced superoxide anion production and gp91phox mRNA expression. We also observed the inhibition of IκBα degradation by vinpocetine, which demonstrates a reduction in the activation of NF-κB explaining the diminished production of IL-33, IL-1β, and TNF-α. Collectively, our data show that vinpocetine alleviates pain and inflammation induced by KO2, which is a mouse model with a direct role of ROS in triggering pain and other inflammatory phenomena. Thus, the results suggest the repurposing of vinpocetine as an anti-inflammatory and analgesic drug.
Collapse
|
2
|
Saleh MA, De Miguel C, Stevens DI, Carmines PK, Pollock DM, Pollock JS. Free radical scavenging decreases endothelin-1 excretion and glomerular albumin permeability during type 1 diabetes. Physiol Rep 2017; 4:4/24/e13055. [PMID: 28039404 PMCID: PMC5210388 DOI: 10.14814/phy2.13055] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 11/03/2016] [Accepted: 11/04/2016] [Indexed: 11/24/2022] Open
Abstract
Increased renal endothelin-1 (ET-1) production and an ETA receptor-dependent increase in glomerular albumin permeability (Palb) accompany type 1 diabetes mellitus (T1D). We hypothesized that T1D-induced oxidative stress contributes to renal ET-1 production and glomerular Palb Male rats with streptozotocin-induced T1D were provided free access to drinking water without additives (T1D rats) or containing the free radical scavenger tempol (1 mmol/L; T1D+Tempol). After 3 weeks, T1D+Tempol rats displayed lower urinary excretion of thiobarbituric acid reactive substances and glomerular superoxide production (dihydroethidium staining) compared to T1D rats. Urinary ET-1 excretion and inner medullary (but not cortical or outer medullary) prepro-ET-1 mRNA expression were lower in the T1D+Tempol group than in the T1D group. Palb, measured as the change in volume of isolated glomeruli upon exposure to oncotic gradients of albumin, was significantly lower in the T1D+Tempol group than in the T1D group. Tempol treatment did not alter protein excretion or creatinine clearance. These data support the postulate that oxidative stress contributes to glomerular Palb and renal ET-1 production during the early phase of type 1 diabetes.
Collapse
Affiliation(s)
- Mohamed A Saleh
- Medical College of Georgia, Augusta University, Augusta, Georgia.,Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Carmen De Miguel
- Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - David I Stevens
- Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Pamela K Carmines
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - David M Pollock
- Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama.,Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Jennifer S Pollock
- Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama .,Medical College of Georgia, Augusta University, Augusta, Georgia
| |
Collapse
|
3
|
Li Y, Wei Y, Zheng F, Guan Y, Zhang X. Prostaglandin E2 in the Regulation of Water Transport in Renal Collecting Ducts. Int J Mol Sci 2017; 18:ijms18122539. [PMID: 29186911 PMCID: PMC5751142 DOI: 10.3390/ijms18122539] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 11/16/2017] [Accepted: 11/18/2017] [Indexed: 01/26/2023] Open
Abstract
The kidney plays a central role in the regulation of the body water balance. The process of targeting the water channel aquaporin-2 (AQP2) on the apical plasma membrane of the collecting duct (CD) principal cells is mainly regulated by the antidiuretic peptide hormone arginine vasopressin (AVP), which is responsible for the maintenance of water homeostasis. Recently, much attention has been focused on the local factors modulating renal water reabsorption by AQP2 in the collecting ducts, especially prostaglandin E2 (PGE₂). PGE₂ is a lipid mediator involved in a variety of physiological and pathophysiological processes in the kidney. The biological function of PGE₂ is mainly mediated by four G-protein-coupled receptors, namely EP1-4, which couple to drive separate intracellular signaling pathways. Increasing evidence demonstrates that PGE₂ is essential for renal water transport regulation via multiple mechanisms. Each EP receptor plays a unique role in regulating water reabsorption in renal collecting ducts. This brief review highlights the role of PGE₂ in the regulation of water reabsorption and discusses the involvement of each EP receptor subtype in renal collecting duct. A better understanding of the role of PGE₂ in renal water transport process may improve disease management strategies for water balance disorders, including nephrogenic diabetes insipidus.
Collapse
Affiliation(s)
- Yuyuan Li
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China.
| | - Yuanyi Wei
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China.
| | - Feng Zheng
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China.
| | - Youfei Guan
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China.
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China.
- AstraZeneca-Shenzhen University Joint Institute of Nephrology, Shenzhen University Health Science Center, Shenzhen 518060, China.
| | - Xiaoyan Zhang
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China.
- AstraZeneca-Shenzhen University Joint Institute of Nephrology, Shenzhen University Health Science Center, Shenzhen 518060, China.
| |
Collapse
|
4
|
Fattori V, Serafim KGG, Zarpelon AC, Borghi SM, Pinho-Ribeiro FA, Alves-Filho JC, Cunha TM, Cunha FQ, Casagrande R, Verri WA. Differential regulation of oxidative stress and cytokine production by endothelin ET A and ET B receptors in superoxide anion-induced inflammation and pain in mice. J Drug Target 2016; 25:264-274. [PMID: 27701898 DOI: 10.1080/1061186x.2016.1245308] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The present study investigated whether endothelin-1 acts via ETA or ETB receptors to mediate superoxide anion-induced pain and inflammation. Mice were treated with clazosentan (ETA receptor antagonist) or BQ-788 (ETB receptor antagonist) prior to stimulation with the superoxide anion donor, KO2. Intraplantar treatment with 30 nmol of clazosentan or BQ-788 reduced mechanical hyperalgesia (47% and 42%), thermal hyperalgesia (68% and 76%), oedema (50% and 30%); myeloperoxidase activity (64% and 32%), and overt-pain like behaviours, such as paw flinching (42% and 42%) and paw licking (38% and 62%), respectively. Similarly, intraperitoneal treatment with 30 nmol of clazosentan or BQ-788 reduced leukocyte recruitment to the peritoneal cavity (58% and 32%) and abdominal writhing (81% and 77%), respectively. Additionally, intraplantar treatment with clazosentan or BQ-788 decreased spinal (45% and 41%) and peripheral (47% and 47%) superoxide anion production as well as spinal (47% and 47%) and peripheral (33% and 54%) lipid peroxidation, respectively. Intraplantar treatment with clazosentan, but not BQ-788, reduced spinal (71%) and peripheral (51%) interleukin-1 beta as well as spinal (59%) and peripheral (50%) tumor necrosis factor-alpha production. Therefore, the present study unveils the differential mechanisms by which ET-1, acting on ETA or ETB receptors, regulates superoxide anion-induced inflammation and pain.
Collapse
Affiliation(s)
- Victor Fattori
- a Departamento de Ciências Patológicas, Centro de Ciências Biológicas , Universidade Estadual de Londrina , Londrina , Brazil
| | - Karla G G Serafim
- a Departamento de Ciências Patológicas, Centro de Ciências Biológicas , Universidade Estadual de Londrina , Londrina , Brazil
| | - Ana C Zarpelon
- a Departamento de Ciências Patológicas, Centro de Ciências Biológicas , Universidade Estadual de Londrina , Londrina , Brazil
| | - Sergio M Borghi
- a Departamento de Ciências Patológicas, Centro de Ciências Biológicas , Universidade Estadual de Londrina , Londrina , Brazil
| | - Felipe A Pinho-Ribeiro
- a Departamento de Ciências Patológicas, Centro de Ciências Biológicas , Universidade Estadual de Londrina , Londrina , Brazil
| | - José C Alves-Filho
- b Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto , Universidade de São Paulo , Ribeirão Preto , Brazil
| | - Thiago M Cunha
- b Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto , Universidade de São Paulo , Ribeirão Preto , Brazil
| | - Fernando Q Cunha
- b Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto , Universidade de São Paulo , Ribeirão Preto , Brazil
| | - Rúbia Casagrande
- c Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde , Universidade Estadual de Londrina , Londrina , Brazil
| | - Waldiceu A Verri
- a Departamento de Ciências Patológicas, Centro de Ciências Biológicas , Universidade Estadual de Londrina , Londrina , Brazil
| |
Collapse
|
5
|
KLENIEWSKA P, GORĄCA A. Influence of Endothelin 1 Receptor Blockers and a Nitric Oxide Synthase Inhibitor on Reactive Oxygen Species Formation in Rat Lungs. Physiol Res 2016; 65:789-798. [DOI: 10.33549/physiolres.933263] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
This study was designated to estimate protective role of ETA and ETB receptor antagonist against endothelin 1 (ET-1)-induced oxidative stress in lungs and determine whether these effects are mediated by nitric oxide (NO) synthase. Experiments were performed on Wistar rats divided into the following groups: I – saline (0.9 % NaCl); II – ET-1 (3 μg/kg b.w.), III – BQ123 (1 mg/kg b.w.) + ET-1 (3 μg/kg b.w.), IV – BQ788 (3 mg/kg b.w.) + ET-1 (3 μg/kg b.w.), V – N-nitro-L-arginine methyl ester (L-NAME) (5 mg/kg b.w.) + ET-1 (3 μg/kg b.w.). ETA and ETB receptor antagonists or L-NAME were administered 30 min before ET-1 injection. The levels of the following substances were measured in the lungs homogenates: thiobarbituric acid reactive substances (TBARS), hydrogen peroxide (H2O2), reduced glutathione (GSH) and tumor necrosis factor-alpha (TNF-α). The results showed that ET-1 significantly increased TBARS, H2O2 (respectively: p<0.001, p<0.02) and TNF-α levels (p<0.02) and decreased the GSH level (p<0.01) vs. control group. On the other hand, prior administration of ETA receptor blocker (BQ123) significantly attenuated TBARS (p<0.01), H2O2 (p<0.02), TNF-α (p<0.02) and increased GSH (p<0.02) levels vs. ET-1. However, prior administration of ETB receptor blocker BQ788 did not cause significant changes in the: TBARS, H2O2 and TNF-α (p>0.05) levels, but significantly increased the GSH level and GSH/GSSG ratio (p<0.05). Administration of L-NAME significantly attenuated TBARS (p<0.001), H2O2 (p<0.05), TNF-α (p<0.01) and increased GSH (p<0.05) levels vs. ET-1. In conclusion, we demonstrated that ET-1 induced oxidative stress in the lungs is mediated by ETA receptors. ETA receptor blockage inhibited generation of free radicals and TNF-α and ameliorated antioxidant properties. Moreover, generation of reactive oxygen species is mediated by NOS in the lungs.
Collapse
Affiliation(s)
- P. KLENIEWSKA
- Experimental and Clinical Physiology, Department of Cardiovascular Physiology, Medical University of Lodz, Poland
| | | |
Collapse
|