1
|
Zhu J, Liu X, Lu Y, Yue D, He X, Deng W, Zhao S, Xi D. Exploring the Impact of Ampelopsis Grossedentata Flavonoids on Growth Performance, Ruminal Microbiota, and Plasma Physiology and Biochemistry of Kids. Animals (Basel) 2023; 13:2454. [PMID: 37570263 PMCID: PMC10417322 DOI: 10.3390/ani13152454] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/08/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
This study was conducted to evaluate the influences of supplementing Ampelopsis grossedentata flavonoids (AGF) on the rumen bacterial microbiome, plasma physiology and biochemistry, and growth performance of goats. Twenty-four Nubian kids were randomly allocated to three dietary treatments: the control (CON, basal diet), the 1.0 g/kg AGF treatment (AGF), and the 12.5 mg/kg monensin treatment (MN). This trial consisted of 10 days for adaptation and 90 days for data and sample collection. The results reveal that Bacteroidetes, Firmicutes, and Proteobacteria are the dominant phyla in kids' rumen. Compared with the CON group, the alpha diversity in the MN and AGF groups significantly increased (p < 0.01). Beta-diversity shows that rumen microbial composition is more similar in the MN and AGF groups. LEfSe analysis shows that Prevotella_1 in the AGF group were significantly higher than those in the MN and CON group. The high-density lipoprotein cholesterol and glucose levels in the AGF group were significantly higher than those in the CON group (p < 0.05), whereas the low-density lipoprotein cholesterol, glutamic-pyruvic transaminase, and alkaline phosphatase levels exhibited the opposite trend. The average daily gains in the AGF and MN groups significantly increased, while the feed-to-gain ratios were significantly decreased (p < 0.05). The results suggest that adding AGF to the diet improves microbial composition and has important implications for studying juvenile livestock growth and improving economic benefits.
Collapse
Affiliation(s)
- Junhong Zhu
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (J.Z.); (X.L.); (Y.L.); (D.Y.); (X.H.); (W.D.)
| | - Xingneng Liu
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (J.Z.); (X.L.); (Y.L.); (D.Y.); (X.H.); (W.D.)
- Institute of Animal Husbandry, Yunnan Vocational College of Agriculture, Kunming 650201, China
| | - Ying Lu
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (J.Z.); (X.L.); (Y.L.); (D.Y.); (X.H.); (W.D.)
| | - Dan Yue
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (J.Z.); (X.L.); (Y.L.); (D.Y.); (X.H.); (W.D.)
| | - Xiaoming He
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (J.Z.); (X.L.); (Y.L.); (D.Y.); (X.H.); (W.D.)
| | - Weidong Deng
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (J.Z.); (X.L.); (Y.L.); (D.Y.); (X.H.); (W.D.)
| | - Sumei Zhao
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (J.Z.); (X.L.); (Y.L.); (D.Y.); (X.H.); (W.D.)
| | - Dongmei Xi
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (J.Z.); (X.L.); (Y.L.); (D.Y.); (X.H.); (W.D.)
| |
Collapse
|
2
|
Dihydromyricetin Acts as a Potential Redox Balance Mediator in Cancer Chemoprevention. Mediators Inflamm 2021; 2021:6692579. [PMID: 33776577 PMCID: PMC7979283 DOI: 10.1155/2021/6692579] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/11/2021] [Accepted: 02/27/2021] [Indexed: 01/10/2023] Open
Abstract
Dihydromyricetin (DHM) is a flavonoid extracted from the leaves and stems of the edible plant Ampelopsis grossedentata that has been used for Chinese Traditional Medicine. It has attracted considerable attention from consumers due to its beneficial properties including anticancer, antioxidative, and anti-inflammatory activities. Continuous oxidative stress caused by intracellular redox imbalance can lead to chronic inflammation, which is intimately associated with the initiation, promotion, and progression of cancer. DHM is considered a potential redox regulator for chronic disease prevention, and its biological activities are abundantly evaluated by using diverse cell and animal models. However, clinical investigations are still scanty. This review summarizes the current potential chemopreventive effects of DHM, including its properties such as anticancer, antioxidative, and anti-inflammatory activities, and further discusses the underlying molecular mechanisms of DHM in cancer chemoprevention by targeting redox balance and influencing the gut microbiota.
Collapse
|
3
|
Ampelopsin sodium exhibits antitumor effects against bladder carcinoma in orthotopic xenograft models. Anticancer Drugs 2012; 23:590-6. [PMID: 22241170 DOI: 10.1097/cad.0b013e32835019f9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The aim of this study was to establish xenograft models of tumor in mice bladder and evaluate the antitumor efficacy of ampelopsin sodium (Amp-Na). A total of 2×10 human bladder carcinoma EJ cells and murine sarcoma 180 cells were instilled into the bladder of BALB/c nu/nu mice and Swiss mice after preconditioning to establish the tumor model. Mice bearing orthotopic tumors were treated with Amp-Na by intravenous, intraperitoneal, or intravesical instillation. In addition, the pharmacokinetics property of Amp-Na was investigated in normal BALB/c mice. Our results showed that Amp-Na was excreted mainly through the urine, where it existed at a high concentration. Amp-Na significantly inhibited the proliferation of EJ and sarcoma 180 cells both in vivo and in vitro and this can be at least partially attributed to the cell cycle arrest induced by Amp-Na. This study suggests that the use of Amp-Na is an attractive chemotherapeutic modality for bladder cancer patients.
Collapse
|
4
|
Solanki SS, Sarkar B, Dhanwani RK. Microemulsion drug delivery system: for bioavailability enhancement of ampelopsin. ISRN PHARMACEUTICS 2012; 2012:108164. [PMID: 22830055 PMCID: PMC3399350 DOI: 10.5402/2012/108164] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Accepted: 04/26/2012] [Indexed: 11/23/2022]
Abstract
Ampelopsin, one of the most common flavonoids, reported to possess numerous pharmacological activities and shows poor aqueous solubility. The purpose of this study was to enhance the dissolution rate and bioavailability of this drug by developing a novel delivery system that is microemulsion (ME) and to study the effect of microemulsion (ME) on the oral bioavailability of ampelopsin. Capmul MCM-based ME formulation with Cremophor EL as surfactant and Transcutol as cosurfactant was developed for oral delivery of ampelopsin. Optimised ME was evaluated for its transparency, viscosity, percentage assay and so forth. Solubilisation capacity of the ME system was also determined. The prepared ME was compared with the pure drug solution and commercially available tablet for in vitro drug release. The optimised ME formulation containing ampelopsin, Capmul MCM (5.5%), Cremophor EL (25%), Transcutol P (8.5%), and distilled water showed higher in vitro drug release, as compared to plain drug suspension and the suspension of commercially available tablet. These results demonstrate the potential use of ME for improving the bioavailability of poor water soluble compounds, such as ampelopsin.
Collapse
Affiliation(s)
- Shailendra Singh Solanki
- Department of Pharmaceutics, College of Pharmacy, IPS Academy, Rajendra Nagar, Indore 452012, India
| | | | | |
Collapse
|