1
|
Rasouli-Gharehsaghal K, Shakeri M, Zhandi M, Amini HR, Ghadimi F, Golkar-Narenji A, Mozdziak PE. Spermatogenesis regeneration by transfected spermatogonial stem cells in infertile roosters through testicular transplantation. Theriogenology 2023; 198:100-106. [PMID: 36571934 DOI: 10.1016/j.theriogenology.2022.12.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/28/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
Investigations pertaining to spermatogonial stem cells (SSCs) have led to the use of these cells in a variety of fields including infertility treatments, production of transgenic animals, and genome editing. The aim of the present study was to investigate the plausibility of regenerating spermatogenesis in infertile roosters by transplanting transfected SSCs into testes. Spermatogonial stem cells were isolated and cultured for seven days. Afterward, pDB2, a plasmid vector carrying a reporter gene, GFP, was transfected into the SSCs. Transfected SSCs were transplanted into the left testis of infertile roosters. Tissue samples from the recipients' testes were obtained six weeks after the transplantation and transplanted SSCs were observed in the basement membrane. After eight weeks, GFP-positive spermatozoa were observed in collected semen from the recipient roosters and GFP gene in spermatozoa was confirmed using PCR. The recipient roosters were mated with hens. Hatchlings were visually checked and their tissue samples were tested by PCR to identify transgenesis but both of them were negative. Overall, it seems that regeneration of spermatogenesis in roosters via transfected SSCs is possible but more studies are need to produce recombinant proteins by this way.
Collapse
Affiliation(s)
- Kazem Rasouli-Gharehsaghal
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Malak Shakeri
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Mahdi Zhandi
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
| | - Hamid-Reza Amini
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran; Transgenesis Center of Excellence, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran; Department of Biology, Nourdanesh Institute of Higher Education, Meymeh, Isfahan, Iran
| | - Fereshteh Ghadimi
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Afsaneh Golkar-Narenji
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC, USA
| | - Paul Edward Mozdziak
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC, USA; Physiology Graduate Program, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
2
|
Nakami WN, Nguhiu-Mwangi J, Kipyegon AN, Ogugo M, Muteti C, Kemp S. Comparative Efficiency for in vitro Transfection of Goat Undifferentiated Spermatogonia Using Lipofectamine Reagents and Electroporation. Stem Cells Cloning 2022; 15:11-20. [PMID: 35592658 PMCID: PMC9113451 DOI: 10.2147/sccaa.s356588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/08/2022] [Indexed: 12/01/2022] Open
Abstract
Introduction Spermatogonial stem cells (SSC), also referred to as undifferentiated spermatogonia, are the germline stem cells responsible for continuous spermatogenesis throughout a male’s life. They are, therefore, an ideal target for gene editing. Previously, SSC from animal testis have been isolated and transplanted to homologous recipients resulting in the successful reestablishment of donor-derived spermatogenesis. Methods Enhanced green fluorescent protein (eGFP) gene transfection into goat SSC was evaluated using liposomal carriers and electroporation. The cells were isolated from the prepubertal Galla goats testis cultured in serum-free defined media and transfected with the eGFP gene. Green fluorescing of SSC colonies indicated transfection. Results The use of lipofectamineTM stem reagent and lipofectamineTM 2000 carriers resulted in more SSC colonies expressing the eGFP gene (25.25% and 22.25%, respectively). Electroporation resulted in 15% ± 0.54 eGFP expressing SSC colonies. Furthermore, cell viability was higher in lipofectamine transfection (55% ± 0.21) as compared to electroporation (38% ± 0.14). Conclusion These results indicated that lipofectamine was more effective in eGFP gene transfer into SSC. The successful transient transfection points to a possibility of transfecting transgenes into male germ cells in genetic engineering programs.
Collapse
Affiliation(s)
- Wilkister Nabulindo Nakami
- Livestock Genetics, International Livestock Research Institute, ILRI, Nairobi, Kenya.,Department of Clinical Studies, Faculty of Veterinary Medicine, University of Nairobi, Nairobi, Kenya.,Centre for Tropical Livestock Genetics and Health (CTLGH), ILRI, Nairobi, Kenya
| | - James Nguhiu-Mwangi
- Department of Clinical Studies, Faculty of Veterinary Medicine, University of Nairobi, Nairobi, Kenya
| | - Ambrose Ng'eno Kipyegon
- Department of Clinical Studies, Faculty of Veterinary Medicine, University of Nairobi, Nairobi, Kenya
| | - Moses Ogugo
- Livestock Genetics, International Livestock Research Institute, ILRI, Nairobi, Kenya.,Centre for Tropical Livestock Genetics and Health (CTLGH), ILRI, Nairobi, Kenya
| | - Charity Muteti
- Livestock Genetics, International Livestock Research Institute, ILRI, Nairobi, Kenya.,Centre for Tropical Livestock Genetics and Health (CTLGH), ILRI, Nairobi, Kenya
| | - Stephen Kemp
- Livestock Genetics, International Livestock Research Institute, ILRI, Nairobi, Kenya.,Centre for Tropical Livestock Genetics and Health (CTLGH), ILRI, Nairobi, Kenya
| |
Collapse
|
3
|
Antioxidant or Apoptosis Inhibitor Supplementation in Culture Media Improves Post-Thaw Recovery of Murine Spermatogonial Stem Cells. Antioxidants (Basel) 2021; 10:antiox10050754. [PMID: 34068575 PMCID: PMC8151184 DOI: 10.3390/antiox10050754] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/19/2021] [Accepted: 05/06/2021] [Indexed: 01/03/2023] Open
Abstract
We postulated that supplementation of antioxidant or apoptosis inhibitor in post-thaw culture media of spermatogonial stem cells (SSCs) alleviates reactive oxygen species (ROS) generation and apoptosis. Our aim was to develop an effective culture media for improving post-thaw recovery of SSCs. To determine the efficacy of supplementation with hypotaurine (HTU), α-tocopherol (α-TCP), and Z-DEVD-FMK (ZDF), we assessed the relative proliferation rate and SSC functional activity and performed a ROS generation assay, apoptosis assay, and western blotting for determination of the Bax/Bcl-xL ratio, as well as immunocytochemistry and real-time quantitative polymerase chain reaction (RT-qPCR) for SSC characterization. The relative proliferation rates with HTU 400 μM (133.7 ± 3.2%), α-TCP 400 μM (158.9 ± 3.6%), and ZDF 200 μM (133.1 ± 7.6%) supplementation were higher than that in the DMSO control (100 ± 3.6%). ROS generation was reduced with α-TCP 400 μM (0.8-fold) supplementation in comparison with the control (1.0-fold). Early apoptosis and Bax/Bcl-xL were lower with α-TCP 400 μM (2.4 ± 0.4% and 0.5-fold) and ZDF 200 μM (1.8 ± 0.4% and 0.3-fold) supplementation in comparison with the control (5.3 ± 1.4% and 1.0-fold) with normal characterization and functional activity. Supplementation of post-thaw culture media with α-TCP 400 μM and ZDF 200 μM improved post-thaw recovery of frozen SSCs via protection from ROS generation and apoptosis after cryo-thawing.
Collapse
|
4
|
Rasouli-Gharehsaghal K, Shakeri M, Zhandi M, Amini HR, Yousefi AR, Asadirad M. Improvement of in vitro proliferation of cockerel spermatogonial stem cells using different combinations of growth factors. Br Poult Sci 2020; 61:660-668. [PMID: 32902330 DOI: 10.1080/00071668.2020.1808187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
1. This study examined whether in vitro proliferation and maintenance of cockerel spermatogonial stem cells (SSCs) could be improved by adding different combinations of growth factors (GFs), including glial cell line-derived neurotrophic factor (GDNF), basic fibroblast growth factor (bFGF) or leukaemia inhibitory factor (LIF) into the culture medium. 2. The SSCs were isolated from the testes of immature cockerels. For short-term cultures, a medium supplemented with different combinations of GFs for 7 d in 5 replicates was used. The groups were classified as follows: without GF (control group); with GDNF (G group); with GDNF and bFGF (GF group); and with GDNF, bFGF and LIF (GFL group). The number of colonies and cells per colony, as well as the transcript abundance of STRA8 and OCT4 genes, was determined 7 d after the initial culturing. Immunofluorescence staining of SSEA-1, SSEA-3 and VASA protein markers, besides periodic acid-Schiff (PAS) staining, was carried out. 3. The number of colonies and cells per colony increased in the G, GF and GFL groups, compared to the control group (P < 0.01); however, the highest proliferation and colony formation were observed in the GFL group. The positive immunofluorescence staining of SSEA-1, SSEA-3 and VASA protein markers, as well as PAS staining, confirmed the self-renewal and colonisation of cockerel SSCs. The proliferation results were supported by the increased STRA8 and OCT4 transcript abundance in the treated groups (G, GF and GLF), compared to the control group. The SSC proliferation was associated with the higher transcript abundance of STAR8 and OCT4 genes in the GFL group, compared to the G and GF groups (P < 0.01). 4. The results showed that proliferation and colony-forming capacity of cockerel SSCs were positively improved by GDNF, bFGF and LIF. However, the most significant effect was observed when the medium was supplemented with LIF in combination with GDNF and bFGF.
Collapse
Affiliation(s)
- K Rasouli-Gharehsaghal
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran , Karaj, Iran
| | - M Shakeri
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran , Karaj, Iran
| | - M Zhandi
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran , Karaj, Iran
| | - H R Amini
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran , Karaj, Iran.,Transgenesis Center of Excellence, Isfahan (Khorasgan) Branch, Islamic Azad University , Isfahan, Iran
| | - A R Yousefi
- Department of Pathology and Experimental Animals, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organisation (AREEO) , Karaj, Iran
| | - M Asadirad
- Department of Animal and Poultry Science, College of Aburaihan, University of Tehran , Pakdasht, Tehran, Iran
| |
Collapse
|
5
|
Successful genetic modification of porcine spermatogonial stem cells via an electrically responsive Au nanowire injector. Biomaterials 2019; 193:22-29. [DOI: 10.1016/j.biomaterials.2018.12.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 11/06/2018] [Accepted: 12/07/2018] [Indexed: 12/13/2022]
|
6
|
Abbasi H, Hosseini SM, Hajian M, Nasiri Z, Bahadorani M, Tahmoorespur M, Nasiri MR, Nasr-Esfahani MH. Lentiviral vector-mediated transduction of goat undifferentiated spermatogonia. Anim Reprod Sci 2015; 163:10-7. [DOI: 10.1016/j.anireprosci.2015.09.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 08/05/2015] [Accepted: 09/02/2015] [Indexed: 11/26/2022]
|