1
|
Ozturk M, Turkyilmaz Unal B, García-Caparrós P, Khursheed A, Gul A, Hasanuzzaman M. Osmoregulation and its actions during the drought stress in plants. PHYSIOLOGIA PLANTARUM 2021; 172:1321-1335. [PMID: 33280137 DOI: 10.1111/ppl.13297] [Citation(s) in RCA: 233] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/07/2020] [Accepted: 12/01/2020] [Indexed: 05/27/2023]
Abstract
Drought stress, which causes a decline in quality and quantity of crop yields, has become more accentuated these days due to climatic change. Serious measures need to be taken to increase the tolerance of crop plants to acute drought conditions likely to occur due to global warming. Drought stress causes many physiological and biochemical changes in plants, rendering the maintenance of osmotic adjustment highly crucial. The degree of plant resistance to drought varies with plant species and cultivars, phenological stages of the plant, and the duration of plant exposure to the stress. Osmoregulation in plants under low water potential relies on synthesis and accumulation of osmoprotectants or osmolytes such as soluble proteins, sugars, and sugar alcohols, quaternary ammonium compounds, and amino acids, like proline. This review highlights the role of osmolytes in water-stressed plants and of enzymes entailed in their metabolism. It will be useful, especially for researchers working on the development of drought-resistant crops by using the metabolic-engineering techniques.
Collapse
Affiliation(s)
- Munir Ozturk
- Botany Department, Centre for Environmental Studies, Ege University, Izmir, Turkey
| | - Bengu Turkyilmaz Unal
- Department of Biotechnology, Faculty of Science and Arts, Nigde Omer Halisdemir University, Nigde, Turkey
| | - Pedro García-Caparrós
- Agronomy Department of Superior School Engineering, University of Almería, Agrifood Campus of International Excellence, Almería, Spain
| | - Anum Khursheed
- Department of Biochemistry, Quaid-I-Azam University, Islamabad, Pakistan
| | - Alvina Gul
- Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| |
Collapse
|
2
|
Xu Z, Sun M, Jiang X, Sun H, Dang X, Cong H, Qiao F. Glycinebetaine Biosynthesis in Response to Osmotic Stress Depends on Jasmonate Signaling in Watermelon Suspension Cells. FRONTIERS IN PLANT SCIENCE 2018; 9:1469. [PMID: 30369936 PMCID: PMC6194323 DOI: 10.3389/fpls.2018.01469] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 09/18/2018] [Indexed: 05/02/2023]
Abstract
Glycinebetaine is an important non-toxic osmoprotectant, which is accumulated in higher plants under various stresses. The biosynthesis of glycinebetaine achieved via is a two-step oxidation from choline and betaine aldehyde, catalyzed by choline monooxygenase (CMO) and betaine aldehyde dehydrogenase (BADH), respectively. Up-regulated gene expression of BADH and CMO induced by stress is clearly observed, but the signal transduction is poorly understood. Here, glycinebetaine accumulation in response to osmotic stress and growth recovery induced by exogenous glycinebetaine were observed in a watermelon cell line. When tracing back to the genome sequence of watermelon, it shows that there exists only one member of ClCMO or ClBADH corresponding to glycinebetaine biosynthesis. Both genes harbor a CGTCA-motif in their promoter region which is involved in methyl jasmonate (MeJA)-responsiveness. Amongst MeJA, Ethephon, abscisic acid (ABA), and salicylic acid (SA), MeJA was most effective in gene inducing the expression of ClCMO and ClBADH, and the accumulation of glycinebetaine could also reach an amount comparable to that after osmotic stress by mannitol. Moreover, when ibuprofen (IBU), a JA biosynthesis inhibitor, was pre-perfused into the cells before osmotic stress, glycinebetaine accumulation was suppressed significantly. Interestingly, newly grown cells can keep a high content of glycinebetaine when they are sub-cultured from osmotic stressed cells. This study suggests that osmotic stress induced glycinebetaine biosynthesis occurs via JA signal transduction and not only plays a key role in osmotic stress resistance but also contributes to osmotic stress hardening.
Collapse
Affiliation(s)
- Zijian Xu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Mengli Sun
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Xuefei Jiang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Huapeng Sun
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture, Danzhou, China
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, China
| | - Xuanmin Dang
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture, Danzhou, China
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, China
| | - Hanqing Cong
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture, Danzhou, China
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, China
| | - Fei Qiao
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture, Danzhou, China
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, China
| |
Collapse
|
3
|
Carrillo-Campos J, Riveros-Rosas H, Rodríguez-Sotres R, Muñoz-Clares RA. Bona fide choline monoxygenases evolved in Amaranthaceae plants from oxygenases of unknown function: Evidence from phylogenetics, homology modeling and docking studies. PLoS One 2018; 13:e0204711. [PMID: 30256846 PMCID: PMC6157903 DOI: 10.1371/journal.pone.0204711] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 09/12/2018] [Indexed: 12/25/2022] Open
Abstract
Few land plants can synthesize and accumulate the osmoprotectant glycine betaine (GB) even though this metabolic trait has major adaptive importance given the prevalence of drought, hypersaline soils or cold. GB is synthesized from choline in two reactions catalyzed by choline monooxygenases (CMOs) and enzymes of the family 10 of aldehyde dehydrogenases (ALDH10s) that gained betaine aldehyde dehydrogenase activity (BADH). Homolog genes encoding CMO and ALDH10 enzymes are present in all known land plant genomes, but since GB-non-accumulators plants lack the BADH-type ALDH10 isozyme, they would be expected to also lack the CMO activity to avoid accumulation of the toxic betaine aldehyde. To explore CMOs substrate specificity, we performed amino acid sequence alignments, phylogenetic analysis, homology modeling and docking simulations. We found that plant CMOs form a monophyletic subfamily within the Rieske/mononuclear non-heme oxygenases family with two clades: CMO1 and CMO2, the latter diverging from CMO1 after gene duplication. CMO1 enzymes are present in all plants; CMO2s only in the Amaranthaceae high-GB-accumulators plants. CMO2s, and particularly their mononuclear non-heme iron domain where the active site is located, evolved at a faster rate than CMO1s, which suggests positive selection. The homology model and docking simulations of the spinach CMO2 enzyme showed at the active site three aromatic residues forming a box with which the trimethylammonium group of choline could interact through cation-π interactions, and a glutamate, which also may interact with the trimethylammonium group through a charge-charge interaction. The aromatic box and the carboxylate have been shown to be critical for choline binding in other proteins. Interestingly, these residues are conserved in CMO2 proteins but not in CMO1 proteins, where two of these aromatic residues are leucine and the glutamate is asparagine. These findings reinforce our proposal that the CMO1s physiological substrate is not choline but a still unknown metabolite.
Collapse
Affiliation(s)
- Javier Carrillo-Campos
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Héctor Riveros-Rosas
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Rogelio Rodríguez-Sotres
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Rosario A. Muñoz-Clares
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
4
|
Mishra A, Tanna B. Halophytes: Potential Resources for Salt Stress Tolerance Genes and Promoters. FRONTIERS IN PLANT SCIENCE 2017; 8:829. [PMID: 28572812 PMCID: PMC5435751 DOI: 10.3389/fpls.2017.00829] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 05/02/2017] [Indexed: 05/17/2023]
Abstract
Halophytes have demonstrated their capability to thrive under extremely saline conditions and thus considered as one of the best germplasm for saline agriculture. Salinity is a worldwide problem, and the salt-affected areas are increasing day-by-day because of scanty rainfall, poor irrigation system, salt ingression, water contamination, and other environmental factors. The salinity stress tolerance mechanism is a very complex phenomenon, and some pathways are coordinately linked for imparting salinity tolerance. Though a number of salt responsive genes have been reported from the halophytes, there is always a quest for promising stress-responsive genes that can modulate plant physiology according to the salt stress. Halophytes such as Aeluropus, Mesembryanthemum, Suaeda, Atriplex, Thellungiella, Cakile, and Salicornia serve as a potential candidate for the salt-responsive genes and promoters. Several known genes like antiporters (NHX, SOS, HKT, VTPase), ion channels (Cl-, Ca2+, aquaporins), antioxidant encoding genes (APX, CAT, GST, BADH, SOD) and some novel genes such as USP, SDR1, SRP etc. were isolated from halophytes and explored for developing stress tolerance in the crop plants (glycophytes). It is evidenced that stress triggers salt sensors that lead to the activation of stress tolerance mechanisms which involve multiple signaling proteins, up- or down-regulation of several genes, and finally the distinctive or collective effects of stress-responsive genes. In this review, halophytes are discussed as an excellent platform for salt responsive genes which can be utilized for developing salinity tolerance in crop plants through genetic engineering.
Collapse
Affiliation(s)
- Avinash Mishra
- Marine Biotechnology and Ecology Division, Central Salt and Marine Chemicals Research Institute (CSIR)Bhavnagar, India
- Academy of Scientific and Innovative Research, Council of Scientific and Industrial ResearchNew Delhi, India
| | - Bhakti Tanna
- Marine Biotechnology and Ecology Division, Central Salt and Marine Chemicals Research Institute (CSIR)Bhavnagar, India
- Academy of Scientific and Innovative Research, Council of Scientific and Industrial ResearchNew Delhi, India
| |
Collapse
|
5
|
Yu L, Chen H, Guan Q, Ma X, Zheng X, Zou C, Li Q. AtMYB2 transcription factor can interact with the CMO promoter and regulate its downstream gene expression. Biotechnol Lett 2012; 34:1749-55. [PMID: 22714268 DOI: 10.1007/s10529-012-0961-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 05/14/2012] [Indexed: 11/25/2022]
Abstract
The pC5 promoter, a region of the choline monooxygenase (CMO) promoter, contains an AtMYB2 transcription factor recognition sequence, TAACCA, and we have examined the interaction between AtMYB2 and the pC5 promoter. The AtMYB2 gene was cloned from Arabidopsis, expressed in Escherichia coli and transferred into pC5-GUS transgenic tobacco plants. Using an electrophoretic mobility shift assay, the AtMYB2 fusion protein binds to the TAACCA sequence in the pC5 promoter. As GUS activity was higher in pC5-GUS/AtMYB2 transgenic tobacco than in pC5-GUS plants, the AtMYB2 protein can bind to the CMO promoter in vitro and activate the transcription of the GUS reporter gene in vivo. The AtMYB2 transcription factor can therefore interact with the CMO promoter directly and regulate its downstream gene expression.
Collapse
Affiliation(s)
- Lian Yu
- College of Life Sciences, Liaoning Normal University, 1 South Liushu Street, Ganjingzi District, Dalian 116081, Liaoning, China
| | | | | | | | | | | | | |
Collapse
|
6
|
From plant gene regulatory grids to network dynamics. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:454-65. [DOI: 10.1016/j.bbagrm.2012.02.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2011] [Revised: 02/15/2012] [Accepted: 02/16/2012] [Indexed: 11/19/2022]
|