1
|
Novel Anti-Cancer Products Targeting AMPK: Natural Herbal Medicine against Breast Cancer. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020740. [PMID: 36677797 PMCID: PMC9863744 DOI: 10.3390/molecules28020740] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/01/2023] [Accepted: 01/04/2023] [Indexed: 01/15/2023]
Abstract
Breast cancer is a common cancer in women worldwide. The existing clinical treatment strategies have been able to limit the progression of breast cancer and cancer metastasis, but abnormal metabolism, immunosuppression, and multidrug resistance involving multiple regulators remain the major challenges for the treatment of breast cancer. Adenosine 5'-monophosphate (AMP)-Activated Protein Kinase (AMPK) can regulate metabolic reprogramming and reverse the "Warburg effect" via multiple metabolic signaling pathways in breast cancer. Previous studies suggest that the activation of AMPK suppresses the growth and metastasis of breast cancer cells, as well as stimulating the responses of immune cells. However, some other reports claim that the development and poor prognosis of breast cancer are related to the overexpression and aberrant activation of AMPK. Thus, the role of AMPK in the progression of breast cancer is still controversial. In this review, we summarize the current understanding of AMPK, particularly the comprehensive bidirectional functions of AMPK in cancer progression; discuss the pharmacological activators of AMPK and some specific molecules, including the natural products (including berberine, curcumin, (-)-epigallocatechin-3-gallate, ginsenosides, and paclitaxel) that influence the efficacy of these activators in cancer therapy; and elaborate the role of AMPK as a potential therapeutic target for the treatment of breast cancer.
Collapse
|
2
|
Sharifi S, Moghaddam FA, Abedi A, Maleki Dizaj S, Ahmadian S, Abdolahinia ED, Khatibi SMH, Samiei M. Phytochemicals impact on osteogenic differentiation of mesenchymal stem cells. Biofactors 2020; 46:874-893. [PMID: 33037744 DOI: 10.1002/biof.1682] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 12/19/2022]
Abstract
Medicinal plants have always been utilized for the prevention and treatment of the spread of different diseases all around the world. To name some traditional medicine that has been used over centuries, we can refer to phytochemicals such as naringin, icariin, genistein, and resveratrol gained from plants. Osteogenic differentiation and mineralization of stem cells can be the result of specific bioactive compounds from plants. One of the most appealing choices for therapy can be mesenchymal stem cells (MSCs) because it has a great capability of self-renewal and differentiation into three descendants, namely, endoderm, mesoderm, and ectoderm. Stem cell gives us the glad tidings of great advances in tissue regeneration and transplantation field for treatment of diseases. Using plant bioactive phytochemicals also holds tremendous promises in treating diseases such as osteoporosis. The purpose of the present review article thus is to investigate what are the roles and consequences of phytochemicals on osteogenic differentiation of MSCs.
Collapse
Affiliation(s)
- Simin Sharifi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Atefeh Abedi
- Department of Endodontics, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Solmaz Maleki Dizaj
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahin Ahmadian
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biology, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Elaheh Dalir Abdolahinia
- Research Center of Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mohammad Samiei
- Department of Endodontics, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
3
|
Shen Y, Wang M, Zhou J, Chen Y, Xu L, Wu M, Xia G, Tam JP, Yu J, Teng X, Yang H, Jia X. Eco-efficient biphasic enzymatic hydrolysis for the green production of rare baohuoside I. Enzyme Microb Technol 2019; 131:109431. [DOI: 10.1016/j.enzmictec.2019.109431] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 09/15/2019] [Accepted: 09/16/2019] [Indexed: 12/21/2022]
|
5
|
Wu T, Shu T, Kang L, Wu J, Xing J, Lu Z, Chen S, Lv J. Icaritin, a novel plant-derived osteoinductive agent, enhances the osteogenic differentiation of human bone marrow- and human adipose tissue-derived mesenchymal stem cells. Int J Mol Med 2017; 39:984-992. [PMID: 28260001 DOI: 10.3892/ijmm.2017.2906] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 01/19/2017] [Indexed: 11/05/2022] Open
Abstract
For the treatment of diseases affecting bones using bone regenerative medicine, there is an urgent need to develop safe, inexpensive drugs that can strongly induce bone formation. In the present study, we systematically investigated the effects of icaritin, a metabolic product of icariin, on the osteogenic differentiation of human bone marrow‑derived mesenchymal stem cells (hBMSCs) and human adipose tissue‑derived stem cells (hADSCs) in vitro. After treatment with icaritin at concentrations of 10‑8-10‑5 M, hBMSCs and hADSCs were examined for alkaline phosphatase activity, osteocalcin (OC) secretion, matrix mineralization and expression levels of bone‑related mRNA and proteins. Data showed that icaritin at concentrations 10‑7-10‑5 M significantly increased alkaline phosphatase activity, OC secretion at different time points, and calcium deposition at day 21. In addition, icaritin upregulated the mRNA expression of genes for bone morphogenetic proteins (BMP‑2, ‑4 and ‑7), bone transcription factors (Runx2 and Dlx5) and bone matrix proteins (ALP, OC and Col‑1). Moreover, icaritin increased the protein levels of BMPs, Runx2 and OC, as detected by western blot analysis. These findings suggest that icaritin enhances the osteogenic differentiation of hBMSCS and hADSCs. Icaritin exerts its potent osteogenic effect possibly by directly stimulating the production of BMPs. Although the osteogenic activity of icaritin in vitro was inferior to that of rhBMP‑2, icaritin displayed better results than icariin. Moreover, the low cost, simple extraction procedure, and an abundance of icaritin make it appealing as a bone regenerative medicine.
Collapse
Affiliation(s)
- Tao Wu
- Department of Emergency, Guangdong Provincial Corps Hospital of the Chinese People's Armed Police Forces, Guangzhou Medical University, Guangzhou, Guangdong 510507, P.R. China
| | - Tao Shu
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Le Kang
- Department of Orthopaedics, Wuyi TCM Hospital of Jiangmen City, The Sixth Affiliated Hospital of the Medicine College of Jinan University, Jiangmen, Guangdong 529031, P.R. China
| | - Jinhui Wu
- Department of Emergency, Guangdong Provincial Corps Hospital of the Chinese People's Armed Police Forces, Guangzhou Medical University, Guangzhou, Guangdong 510507, P.R. China
| | - Jianzhou Xing
- Department of Emergency, Guangdong Provincial Corps Hospital of the Chinese People's Armed Police Forces, Guangzhou Medical University, Guangzhou, Guangdong 510507, P.R. China
| | - Zhiqin Lu
- Department of Emergency, Guangdong Provincial Corps Hospital of the Chinese People's Armed Police Forces, Guangzhou Medical University, Guangzhou, Guangdong 510507, P.R. China
| | - Shuxiang Chen
- Department of Orthopaedics, Wuyi TCM Hospital of Jiangmen City, The Sixth Affiliated Hospital of the Medicine College of Jinan University, Jiangmen, Guangdong 529031, P.R. China
| | - Jun Lv
- Department of Emergency, Guangdong Provincial Corps Hospital of the Chinese People's Armed Police Forces, Guangzhou Medical University, Guangzhou, Guangdong 510507, P.R. China
| |
Collapse
|