1
|
Farhad SZ, Karbalaeihasanesfahani A, Dadgar E, Nasiri K, Hosseini NM, Valian N, Esfahaniani M, Nabi Afjadi M. Promising potential effects of resveratrol on oral and dental health maintenance: a comprehensive review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:1367-1389. [PMID: 39305330 DOI: 10.1007/s00210-024-03457-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 06/24/2024] [Indexed: 02/14/2025]
Abstract
Resveratrol (RV-3, 5, 4'-trihydroxystilbene) is a natural compound found in plants like red grapes, berries, and peanuts, with promising effects on dental health. It helps strengthen tooth enamel by promoting remineralization, making the teeth more resistant to decay caused by acid-producing bacteria. RV also shields dentin, a vulnerable layer beneath the enamel, from erosion and sensitivity. Its anti-inflammatory properties can reduce inflammation associated with dental conditions such as pulpitis and endodontic diseases. Moreover, RV's antimicrobial activity inhibits the growth of bacteria involved in dental plaque and biofilm formation, preventing their accumulation on the tooth surface. This contributes to a healthier oral environment and prolongs the lifespan of dental restorative materials. However, the research on RV's impact on dental health is in its early stages, and further studies are needed to confirm potential benefits. Important factors such as determining the optimal dosage, understanding its bioavailability, and assessing potential side effects require further investigation. This review focuses on the important role of RV in promoting dental health. It delves into various aspects, including its impact on root health, maintenance of the dental pulp, care for tooth enamel, effectiveness of dental restorative materials, and health of dentin.
Collapse
Affiliation(s)
- Shirin Zahra Farhad
- Department of Periodontics, Faculty of Dentistry, Isfahan(Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | | | - Esmaeel Dadgar
- Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kamyar Nasiri
- Faculty of Dentistry, Islamic Azad University of Medical Sciences, Tehran, Iran
| | - Narges Mohammad Hosseini
- Faculty of Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Neda Valian
- Faculty of Dentistry, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mahla Esfahaniani
- Faculty of Dentistry, Golestan University of Medical Sciences, Gorgan, Iran.
| | - Mohsen Nabi Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
2
|
Gál R, Halmosi R, Gallyas F, Tschida M, Mutirangura P, Tóth K, Alexy T, Czopf L. Resveratrol and beyond: The Effect of Natural Polyphenols on the Cardiovascular System: A Narrative Review. Biomedicines 2023; 11:2888. [PMID: 38001889 PMCID: PMC10669290 DOI: 10.3390/biomedicines11112888] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/11/2023] [Accepted: 10/19/2023] [Indexed: 11/26/2023] Open
Abstract
Cardiovascular diseases (CVDs) are among the leading causes of morbidity and mortality worldwide. Unhealthy dietary habits have clearly been shown to contribute to the development of CVDs. Beyond the primary nutrients, a healthy diet is also rich in plant-derived compounds. Natural polyphenols, found in fruits, vegetables, and red wine, have a clear role in improving cardiovascular health. In this review, we strive to summarize the results of the relevant pre-clinical and clinical trials that focused on some of the most important natural polyphenols, such as resveratrol and relevant flavonoids. In addition, we aim to identify their common sources, biosynthesis, and describe their mechanism of action including their regulatory effect on signal transduction pathways. Finally, we provide scientific evidence regarding the cardiovascular benefits of moderate, long-term red wine consumption.
Collapse
Affiliation(s)
- Roland Gál
- Division of Cardiology, 1st Department of Medicine, Medical School, University of Pecs, 7624 Pecs, Hungary; (R.G.); (R.H.); (K.T.)
- Szentágothai Research Centre, University of Pecs, 7624 Pecs, Hungary
| | - Róbert Halmosi
- Division of Cardiology, 1st Department of Medicine, Medical School, University of Pecs, 7624 Pecs, Hungary; (R.G.); (R.H.); (K.T.)
- Szentágothai Research Centre, University of Pecs, 7624 Pecs, Hungary
| | - Ferenc Gallyas
- Department of Biochemistry and Medical Chemistry, University of Pecs, 7624 Pecs, Hungary;
| | - Michael Tschida
- Medical School, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Pornthira Mutirangura
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MN 55455, USA;
| | - Kálmán Tóth
- Division of Cardiology, 1st Department of Medicine, Medical School, University of Pecs, 7624 Pecs, Hungary; (R.G.); (R.H.); (K.T.)
- Szentágothai Research Centre, University of Pecs, 7624 Pecs, Hungary
| | - Tamás Alexy
- Department of Medicine, Division of Cardiology, University of Minnesota, Minneapolis, MN 55455, USA;
| | - László Czopf
- Division of Cardiology, 1st Department of Medicine, Medical School, University of Pecs, 7624 Pecs, Hungary; (R.G.); (R.H.); (K.T.)
| |
Collapse
|
3
|
Liu TH, Wang J, Zhang CY, Zhao L, Sheng YY, Tao GS, Xue YZ. Gut microbial characteristical comparison reveals potential anti-aging function of Dubosiella newyorkensis in mice. Front Endocrinol (Lausanne) 2023; 14:1133167. [PMID: 36798665 PMCID: PMC9928160 DOI: 10.3389/fendo.2023.1133167] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 01/09/2023] [Indexed: 02/01/2023] Open
Abstract
INTRODUCTION Previous study has indicated Dubosiella newyorkensis may act as a potential probiotic in age-related diseases. However, its detailed role in aging has not yet been promulgated. This study aimed to explore the potential anti-aging role of Dubosiella newyorkensis by comparing the anti-aging effect of resveratrol in young and old mice. METHOD Measurement of intestinal aging-related factors in colon and serum, and vascular endothelial function-related factors in serum were performed by enzyme-linked immunosorbent assay (ELISA). Gut microbial analysis of intestinal contents were identified by 16S rRNA gene sequencing. RESULTS The effect of Dubosiella newyorkensis on reducing malondialdehyde (MDA) and increasing superoxide dismutase (SOD) in aged mice were greater than that of resveratrol. While the effect of Dubosiella newyorkensis on nitric oxide (NO) level was less than that of resveratrol, the reduction of vascular endothelial growth factor (VEGF) and pentosidine (PTD) was better than that of resveratrol in young mice. In young mice, Dubosiella newyorkensis promoted an increase in the beneficial genus Lactobacillus, Bifidobacterium and Ileibacterium less effectively as compared with resveratrol treatment. In aged mice, Dubosiella newyorkensis promoted the increase of Bifidobacterium, Ileibacterium less effectively than resveratrol, and promoted the increase of Akkermansia, Staphylococcus, Verrucomicrobiota expression better as compared with resveratrol treatment. Both young and old mice showed the same results for the remaining markers, including changes in gut microbial composition and predictions of function. CONCLUSION Dubosiella newyorkensis has similar anti-aging functions with resveratrol. Dubosiella newyorkensis may even be more effective than resveratrol in reducing oxidative stress, improving vascular endothelial function, and redistributing gut microbiota. The research provides an innovative strategy of Dubosiella newyorkensis to improve aging.
Collapse
Affiliation(s)
- Tian-hao Liu
- Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
- Medical College of Jiangnan University, Wuxi, Jiangsu, China
| | - Juan Wang
- Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
- Medical College of Jiangnan University, Wuxi, Jiangsu, China
| | - Chen-yang Zhang
- Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
- Medical College of Jiangnan University, Wuxi, Jiangsu, China
| | - Lin Zhao
- Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
- Medical College of Jiangnan University, Wuxi, Jiangsu, China
| | - Ying-yue Sheng
- Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
- Medical College of Jiangnan University, Wuxi, Jiangsu, China
| | - Guo-shui Tao
- Wuxi Traditional Chinese Medicine Hospital, Wuxi, Jiangsu, China
- *Correspondence: Guo-shui Tao, ; Yu-zheng Xue,
| | - Yu-zheng Xue
- Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
- Medical College of Jiangnan University, Wuxi, Jiangsu, China
- *Correspondence: Guo-shui Tao, ; Yu-zheng Xue,
| |
Collapse
|
4
|
Wang Y, Lei L, Su Q, Qin S, Zhong J, Ni Y, Yang J. Resveratrol Inhibits Insulin-Induced Vascular Smooth Muscle Cell Proliferation and Migration by Activating SIRT1. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:8537881. [PMID: 36479179 PMCID: PMC9722291 DOI: 10.1155/2022/8537881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 12/02/2023]
Abstract
Abnormal proliferation and migration of vascular smooth muscle cells (VSMCs) are essential for the development of hypertension. Insulin has been identified to promote VSMC proliferation and migration; resveratrol has been shown to have protective effects against cardiovascular diseases. This study aimed to investigate the effect of resveratrol on insulin-induced VSMC proliferation and migration and its potential mechanism. VSMC proliferation was measured by Cell Counting Kit-8 (CCK-8), cell counting method, and 5-ethynyl-2'-deoxyuridine (EdU) incorporation assay. Cell migration was detected by wound healing assay and transwell method. Expression of silent information regulator of transcription 1 (SIRT1) and phosphorylation levels of signaling molecules, such as phosphatidylinositol 3-kinase (PI3K) and protein kinase B (Akt), in VSMCs were detected by Western blotting. Resveratrol (25-150 μM) was found to inhibit insulin-induced VSMC proliferation. Pretreatment with 100 μM resveratrol reduced insulin (100 nM)-mediated VSMC migration. LY294002, an inhibitor of PI3K, inhibited the stimulatory effect of insulin (100 nM) on the proliferation of VSMCs. Treatment with resveratrol also decreased insulin-induced stimulatory effect on PI3K and Akt phosphorylation levels. Moreover, resveratrol treatment increased SIRT1 protein expression in VSMCs. A SIRT1 inhibitor, EX527, reversed the inhibitory effect of resveratrol on insulin-induced VSMC proliferation and migration and activation of PI3K and Akt phosphorylation levels. In conclusion, our study revealed that treatment with resveratrol inhibited insulin-mediated VSMC proliferation and migration, possibly by activating SIRT1 and downregulating the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Yijie Wang
- Department of Endocrinology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
- Research Center for Metabolic and Cardiovascular Disease, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Lifu Lei
- Research Center for Metabolic and Cardiovascular Disease, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
- Department of Clinical Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Qian Su
- Department of Endocrinology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
- Research Center for Metabolic and Cardiovascular Disease, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Si Qin
- Department of Endocrinology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
- Research Center for Metabolic and Cardiovascular Disease, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Jian Zhong
- Department of Endocrinology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
- Research Center for Metabolic and Cardiovascular Disease, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Yinxing Ni
- Department of Endocrinology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
- Research Center for Metabolic and Cardiovascular Disease, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Jian Yang
- Research Center for Metabolic and Cardiovascular Disease, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
- Department of Clinical Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| |
Collapse
|
5
|
Nephrotoxicity evaluation and proteomic analysis in kidneys of rats exposed to thioacetamide. Sci Rep 2022; 12:6837. [PMID: 35477741 PMCID: PMC9046159 DOI: 10.1038/s41598-022-11011-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 04/18/2022] [Indexed: 11/18/2022] Open
Abstract
Thioacetamide (TAA) was administered orally at 0, 10, and 30 mg/kg body weight (BW) daily to Sprague–Dawley rats aged 6–7 weeks for 28 consecutive days. Nephrotoxicity and proteomics were evaluated in the kidneys of rats exposed to TAA. The BW decreased, however, the relative kidneys weight increased. No significant histopathologic abnormalities were found in the kidneys. The numbers of monocytes and platelets were significantly increased. However, the mean corpuscular volume and hematocrit values were decreased significantly in rats exposed to 30 mg/kg BW TAA. The expression levels of Kim-1 and NGAL were increased 4 to 5-fold in the kidneys, resulting in significant nephrotoxicity. Proteomic analysis was conducted and a total of 5221 proteins spots were resolved. Of these, 3 and 21 protein spots were up- and downregulated, respectively. The validation of seven proteins was performed by Western blot analysis. The expression level of ASAP2 was significantly upregulated, whereas RGS14, MAP7Dl, IL-3Rα, Tmod1, NQO2, and MUP were reduced. Sixteen isoforms of MUP were found by the 2DE immunoblot assay and were significantly downregulated with increasing exposure to TAA. MUP isoforms were compared in the liver, kidneys, and urine of untreated rats and a total of 43 isoforms were found.
Collapse
|
6
|
Gao RJ, Zhang AM, Jia QH, Dang ZT, Tian T, Zhang JR, Cao N, Tang XC, Ma KT, Li L, Si JQ. The promoting role of Cx43 on the proliferation and migration of arterial smooth muscle cells for angiotensin II-dependent hypertension. Pulm Pharmacol Ther 2021; 70:102072. [PMID: 34428599 DOI: 10.1016/j.pupt.2021.102072] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/03/2021] [Accepted: 08/16/2021] [Indexed: 11/15/2022]
Abstract
BACKGROUND Recent studies have shown that endothelin-1 and angiotensin II (AngII) can increase gap junctional intercellular communication (GJIC) by activating Mitogen-activated protein kinases (MAPKs) pathway. However, not only the precise interaction of AngII with Connexin43(Cx43) and the associated functions remain unclear, but also the regulatory role of Cx43 on the AngII-mediated promotion proliferation and migration of VSMCs is poorly understood. MATERIAL AND METHODS Our research applicated pressure myography measurements, immunofluorescence and Western blot analyses to investigate the changes in physiological indicators in spontaneously hypertensive rats (SHRs) and AngII-stimulated proliferation and migration of A7r5 SMCs(Rat vascular smooth muscle cells). The aim was to elucidate the role of CX43 in hypertension induced by AngII. RESULTS Chronic ramipril (angiotensin converting enzyme inhibitor) management for SHRs significantly attenuated blood pressure and blood vessel wall thickness, also reduced contraction rate in the cerebral artery. The cerebral artery contraction rates, mRNA and protein expression of Cx43, osteopontin (OPN) and proliferating cell nuclear antigen (PCNA) protein expression in the SHR + ramipril and SHR + ramipril + carbenoxolone (CBX, Cx43 specific blocker) groups were significantly lower than those in the SHR group. Cx43 protein expression and Ser368 phosphorylated Cx43 protein levels increased significantly in AngII-stimulated A7r5 cells. However, the levels of phosphorylated Cx43 decreased after pre-treatment with candesartan (AT1 receptor blocker), GF109203X (protein kinase C (PKC) blocker) and U0126 (mitogen-activated protein kinases/extracellular signal-regulated kinase1/2(MEK/ERK1/2)-specific blocker) in AngII-stimulated A7r5 cells. Cx43 was widely distributed in the cell membrane, nucleus, and cytoplasm of the SMCs. Furthermore, pre-treatment of the AngII- stimulated A7r5 cells with Gap26 (Cx43 blocker) significantly inhibited cell migration and decreased the expression levels of MEK1/2, ERK1/2, P-MEK1/2, and P-ERK1/2. CONCLUSION Our research confirms that Cx43 plays an important role in the regulation of proliferation and migration of VSMCs via MEK/ERK and PKC signal pathway in AngII-dependent hypertension.
Collapse
Affiliation(s)
- Rui-Juan Gao
- Department of Physiology, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China; Department of Radiology, First Affiliated Hospital of Shihezi University, Shihezi, 832002, China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China
| | - Ai-Mei Zhang
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China; Department of Cardiology, First Affiliated Hospital of Shihezi University, Shihezi, Xinjiang, 832002, China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China
| | - Qi-Hua Jia
- Department of Physiology, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China
| | - Zi-Ting Dang
- Department of Physiology, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China; Department of Commerce, Shanxi Institute of International Trade & Commerce, Xianyang, 712046, China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China
| | - Tian Tian
- Department of Physiology, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China
| | - Jing-Rong Zhang
- Department of Physiology, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China
| | - Nan Cao
- Department of Physiology, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China
| | - Xue-Chun Tang
- Department of Physiology, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China
| | - Ke-Tao Ma
- Department of Physiology, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China
| | - Li Li
- Department of Physiology, Medical College of Jiaxing University, Jiaxing, 314001, China.
| | - Jun-Qiang Si
- Department of Physiology, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China; Department of Physiology, Huazhong University of Science and Technology of Basic Medical Sciences, Wuhan, 430070, China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China.
| |
Collapse
|
7
|
Resveratrol and endothelial function: A literature review. Pharmacol Res 2021; 170:105725. [PMID: 34119624 DOI: 10.1016/j.phrs.2021.105725] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/08/2021] [Accepted: 06/08/2021] [Indexed: 12/12/2022]
Abstract
Endothelial dysfunction is a major contributing factor to diseases such as atherosclerosis, diabetes mellitus, obesity, hypertension, acute lung injury, preeclampsia, among others. Resveratrol (RSV) is a naturally occurring bioactive polyphenol found in grapes and red wine. According to experimental studies, RSV modulates several events involved in endothelial dysfunction such as impaired vasorelaxation, eNOS uncoupling, leukocyte adhesion, endothelial senescence, and endothelial mesenchymal transition. The endothelial protective effects of RSV are found to be mediated by numerous molecular targets (e.g. Silent Information Regulator 1 (SIRT1), 5' AMP-activated protein kinase (AMPK), endothelial nitric oxide synthase (eNOS), nuclear factor-erythroid-derived 2-related factor-2 (Nrf2), peroxisome proliferator-activated receptor (PPAR), Krüppel-like factor-2 (KLF2), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB)). Herein, we present an updated review addressing pharmacological effects and molecular targets of RSV in maintaining endothelial function, and the potential of this phytochemical for endothelial dysfunction-associated disorders.
Collapse
|
8
|
Liu Y, Li X, Jiang S, Ge Q. Tetramethylpyrazine protects against high glucose-induced vascular smooth muscle cell injury through inhibiting the phosphorylation of JNK, p38MAPK, and ERK. J Int Med Res 2018; 46:3318-3326. [PMID: 29996693 PMCID: PMC6134667 DOI: 10.1177/0300060518781705] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Objectives High glucose-induced alterations in vascular smooth muscle cell behavior have not been fully characterized. We explored the protective mechanism of tetramethylpyrazine (TMP) on rat smooth muscle cell injury induced by high glucose via the mitogen-activated protein kinase (MAPK) signaling pathway. Methods Vascular smooth muscle cells (VSMCs) isolated from rat thoracic aortas were divided into control, high glucose (HG), and pre-hatching TMP groups. The effect of different glucose concentrations on cell viability and on the migration activity of VSMC cells was examined using MTT analysis and the wound scratch assay, respectively. Superoxide dismutase (SOD) and malondialdehyde (MDA) levels were measured using enzyme-linked immunoassays. The levels of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38MAPK, and MAPK phosphorylation were assessed by western blotting. Results Cell proliferation was remarkably increased by increased glucose concentrations. Compared with the HG group, the migratory ability of VSMC cells was reduced in the presence of TMP. TMP also decreased the MDA content in the supernatant, but significantly increased the SOD activity. Western blotting showed that TMP inhibited the phosphorylation of JNK, p38MAPK, and ERK. Conclusions TMP appears to protect against HG-induced VSMC injury through inhibiting reactive oxygen species overproduction, and p38MAPK/JNK/ERK phosphorylation.
Collapse
Affiliation(s)
- Yutao Liu
- 1 Department of Pharmacy, Yantaishan Hospital, Yantai, Shandong, China
| | - Xu Li
- 2 Department of Pharmacy, Yantai Hospital of Infectious Diseases, Yantai, Shandong, China
| | - Shanling Jiang
- 3 Department of Pharmacy, The Affiliated Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
| | - Quanli Ge
- 1 Department of Pharmacy, Yantaishan Hospital, Yantai, Shandong, China
| |
Collapse
|
9
|
Hossain E, Anand-Srivastava MB. Resveratrol prevents angiotensin II-induced hypertrophy of vascular smooth muscle cells through the transactivation of growth factor receptors. Can J Physiol Pharmacol 2017; 95:945-953. [DOI: 10.1139/cjpp-2017-0164] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We previously showed that augmented levels of endogenous angiotensin II (AngII) contribute to vascular smooth muscle cell (VSMC) hypertrophy through the transactivation of growth factor receptors in spontaneously hypertensive rats. Resveratrol (RV), a polyphenolic component of red wine, has also been shown to attenuate AngII-evoked VSMC hypertrophy; however, the molecular mechanism mediating this response is obscure. The present study was therefore undertaken to examine whether RV could prevent AngII-induced VSMC hypertrophy through the transactivation of growth factor receptor and associated signaling pathways. AngII treatment of VSMC enhanced the protein synthesis that was attenuated towards control levels by RV pretreatment as well as by the inhibitors of NADPH oxidase, c-Src, and growth factor receptors. Furthermore, RV pretreatment also inhibited enhanced levels of superoxide anion, NADPH oxidase activity, increased expression of NADPH oxidase subunits, and phosphorylation of c-Src, EGF-R, PDGE-R, ERK1/2, and AKT1/2. In conclusion, these results indicate that RV attenuates AngII-induced VSMC hypertrophy through the inhibition of enhanced oxidative stress and activation of c-Src, growth factor receptors, and MAPK/AKT signaling. We suggest that RV could be used as a therapeutic agent in the treatment of vascular complications associated with hypertension and hypertrophy.
Collapse
Affiliation(s)
- Ekhtear Hossain
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Pavillon Paul-G. Desmarais, C.P. 6128, succursale Centre-ville, Montréal, QC H3C 3J7, Canada
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Pavillon Paul-G. Desmarais, C.P. 6128, succursale Centre-ville, Montréal, QC H3C 3J7, Canada
| | - Madhu B. Anand-Srivastava
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Pavillon Paul-G. Desmarais, C.P. 6128, succursale Centre-ville, Montréal, QC H3C 3J7, Canada
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Pavillon Paul-G. Desmarais, C.P. 6128, succursale Centre-ville, Montréal, QC H3C 3J7, Canada
| |
Collapse
|
10
|
The effect of resveratrol and its methylthio-derivatives on the Nrf2-ARE pathway in mouse epidermis and HaCaT keratinocytes. Cell Mol Biol Lett 2014; 19:500-16. [PMID: 25169438 PMCID: PMC6276002 DOI: 10.2478/s11658-014-0209-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 08/22/2014] [Indexed: 12/30/2022] Open
Abstract
Resveratrol is the most extensively studied stilbene derivative. We previously showed that methylthiostilbenes were more effective inhibitors of CYP1A1 and 1B1 activity than resveratrol. In this study, we investigated whether resveratrol and its methylthio-substituted derivatives, i.e. 3-M-4′-MTS (S2), 3,5-DM-4′-MTS (S5) and 3,4,5-TM-4′-MTS (S7) could activate Nrf2 signaling in the mouse epidermis and in human keratinocytes. Western blot analysis showed translocation of Nrf2 from the cytosol to the nucleus in both models. All of the tested stilbenes increased GST activity, but resveratrol was the most effective inducer. Moreover, only resveratrol increased the protein level of GSTP in the mouse epidermis. GSTM was enhanced in HaCaT cells after the treatment with derivatives S2 and S5. The same effect was observed for GSTP in the case of compound S2. Resveratrol and its derivatives reduced the NQO2 protein level in HaCaT cells. Thus, it is possible that increased expression of GSTP or GSTM and GST activity was linked with NQO2 inhibition in these cells. The results of this study indicate that resveratrol and its methylthioderivatives activate Nrf2 not only in the mouse epidermis, but also in human keratinocytes. Upregulating GST isozymes might be particularly important for deactivating chemical carcinogens, such as PAH.
Collapse
|
11
|
Tang PCT, Ng YF, Ho S, Gyda M, Chan SW. Resveratrol and cardiovascular health--promising therapeutic or hopeless illusion? Pharmacol Res 2014; 90:88-115. [PMID: 25151891 DOI: 10.1016/j.phrs.2014.08.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 07/29/2014] [Accepted: 08/02/2014] [Indexed: 02/07/2023]
Abstract
Resveratrol (3,5,4'-trihydroxy-trans-stilbene) is a natural polyphenolic compound that exists in Polygonum cuspidatum, grapes, peanuts and berries, as well as their manufactured products, especially red wine. Resveratrol is a pharmacologically active compound that interacts with multiple targets in a variety of cardiovascular disease models to exert protective effects or induce a reduction in cardiovascular risks parameters. This review attempts to primarily serve to summarize the current research findings regarding the putative cardioprotective effects of resveratrol and the molecular pathways underlying these effects. One intent is to hopefully provide a relatively comprehensive resource for clues that may prompt ideas for additional mechanistic studies which might further elucidate and strengthen the role of the stilbene family of compounds in cardiovascular disease and cardioprotection. Model systems that incorporate a significant functional association with tissues outside of the cardiovascular system proper, such as adipose (cell culture, obesity models) and pancreatic (diabetes) tissues, were reviewed, and the molecular pathways and/or targets related to these models and influenced by resveratrol are discussed. Because the body of work encompassing the stilbenes and other phytochemicals in the context of longevity and the ability to presumably mitigate a plethora of afflictions is replete with conflicting information and controversy, especially so with respect to the human response, we tried to remain as neutral as possible in compiling and presenting the more current data with minimal commentary, permitting the reader free reign to extract the knowledge most helpful to their own investigations.
Collapse
Affiliation(s)
- Philip Chiu-Tsun Tang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Yam-Fung Ng
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China; State Key Laboratory of Chinese Medicine and Molecular Pharmacology, Shenzhen, China
| | - Susan Ho
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Michael Gyda
- Life Sciences Multimedia Productions, Drexel Hill, PA, USA.
| | - Shun-Wan Chan
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China; State Key Laboratory of Chinese Medicine and Molecular Pharmacology, Shenzhen, China; Food Safety and Technology Research Centre, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China.
| |
Collapse
|
12
|
Wu Z, Uchi H, Morino-Koga S, Shi W, Furue M. Resveratrol inhibition of human keratinocyte proliferation via SIRT1/ARNT/ERK dependent downregulation of aquaporin 3. J Dermatol Sci 2014; 75:16-23. [DOI: 10.1016/j.jdermsci.2014.03.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 02/14/2014] [Accepted: 03/12/2014] [Indexed: 12/12/2022]
|
13
|
Shen YJ, Zhu XX, Yang X, Jin B, Lu JJ, Ding B, Ding ZS, Chen SH. Cardamonin inhibits angiotensin II-induced vascular smooth muscle cell proliferation and migration by downregulating p38 MAPK, Akt, and ERK phosphorylation. J Nat Med 2014; 68:623-9. [PMID: 24595849 DOI: 10.1007/s11418-014-0825-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Accepted: 01/28/2014] [Indexed: 11/27/2022]
Abstract
Cardamonin is a chalconoid isolated from various herbs, such as Alpinia katsumadai and Carya cathayensis Sarg. This study examined the effect of cardamonin on angiotensin II (Ang II)-induced proliferation and migration in rat vascular smooth muscle cells (VSMCs) as well as its underlying mechanisms. The results showed that cardamonin significantly inhibited Ang II-induced proliferation and migration in rat VSMCs in a concentration-dependent manner. Moreover, cardamonin suppressed Ang II-induced phosphorylation of p38 MAPK, Akt, and extracellular regulated protein kinase (ERK). These findings indicate that the downregulation of p38 MAPK, Akt, and ERK phosphorylation might be, at least in part, involved in cardamonin-suppressed proliferation and migration induced by Ang II in rat VSMCs. As proliferation and migration of VSMCs play critical roles in the pathogenesis of atherosclerosis, cardamonin might be a potential candidate for atherosclerosis treatment.
Collapse
Affiliation(s)
- Yan-Jing Shen
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Shi Y, Hou X, Zhang X, Wang Y, Chen Y, Zou J. Inhibition of oxidized-phospholipid-induced vascular smooth muscle cell proliferation by resveratrol is associated with reducing Cx43 phosphorylation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:10534-10541. [PMID: 24079413 DOI: 10.1021/jf4036723] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Abnormal proliferation of vascular smooth muscle cells (VSMCs) is an important factor during the progression of atherosclerosis. In this study, we investigated the effects of resveratrol on atherosclerosis-associated proliferation of VSMCs. We utilized an oxidized phospholipid, 1-palmitoyl-2-oxovaleroyl-sn-glycero-3-phosphorylcholine (POVPC) to induce abnormal proliferation of VSMCs. Our results showed the treatments with resveratrol dose-dependently abolished POVPC-induced VSMC proliferation, as evidenced by the decreased [(3)H]thymidine incorporated into VSMCs and reduced percentage of 5-ethynyl-2'-deoxyuridine (EdU)-positive VSMCs. Cell cycle analysis demonstrated that resveratrol inhibited POVPC-induced increase in the S phase cell population and DNA synthesis. Our study further indicated that POVPC-induced VSMC proliferation was associated with a significant increase in the phosphorylation of Cx43, which was a consequence of activation of MAPK signaling. Interestingly, treatment with resveratrol abolished POVPC-induced phosphorylation of Cx43 as a result of inhibiting activation of Src, MEK, and ERK1/2. Our results provided a novel mechanism by which resveratrol may contribute to cardiovascular protection.
Collapse
Affiliation(s)
- Yue Shi
- Department of Cardiology, Qingdao Municipal Hospital, School of Medicine, Qingdao University , Qingdao, Shandong, China
| | | | | | | | | | | |
Collapse
|
15
|
Kong D, Zheng T, Zhang M, Wang D, Du S, Li X, Fang J, Cao X. Static mechanical stress induces apoptosis in rat endplate chondrocytes through MAPK and mitochondria-dependent caspase activation signaling pathways. PLoS One 2013; 8:e69403. [PMID: 23894471 PMCID: PMC3716647 DOI: 10.1371/journal.pone.0069403] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 06/07/2013] [Indexed: 11/18/2022] Open
Abstract
Mechanical stress has detrimental effects on cartilaginous endplate chondrocytes due to apoptosis in vivo and in vitro. In this study, we investigated the possible apoptosis signaling pathways induced by mechanical stress in cultured rat cervical endplate chondrocytes. Static mechanical load significantly reduced cell viability in a time- and load-dependent manner, as demonstrated by the Cell Counting Kit-8 (CCK-8) assay. Chondrocyte apoptosis induced by mechanical stress was confirmed by annexin V/propidium iodide (PI) staining and terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL). Western blot analysis revealed that static load-induced chondrocyte apoptosis was accompanied by increased phosphorylation of c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase 1/2 (ERK1/2), and p38 mitogen-activated protein kinase (MAPK). The loss of mitochondrial membrane potential (ΔΨm), increased Cytochrome c release, and activated Caspase-9 and Caspase-3, indicating that the mitochondrial pathway is involved in mechanical stress-induced chondrocyte apoptosis. Treatment with inhibitors of JNK (SP600125), p38 MAPK (SB203580), and ERK (PD98059) prior to mechanical stimulation reversed both the static load-induced chondrocyte apoptosis and the activation of JNK, p38 MAPK, and ERK. Taken together, the data presented in this study demonstrate that mechanical stress induces apoptosis in rat cervical endplate chondrocytes through the MAPK-mediated mitochondrial apoptotic pathway.
Collapse
Affiliation(s)
- Dechao Kong
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tiansheng Zheng
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ming Zhang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Daode Wang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shihao Du
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiang Li
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiahu Fang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- * E-mail: (JF); (XC)
| | - Xiaojian Cao
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- * E-mail: (JF); (XC)
| |
Collapse
|