1
|
Saha P, Panda S, Holkar A, Vashishth R, Rana SS, Arumugam M, Ashraf GM, Haque S, Ahmad F. Neuroprotection by agmatine: Possible involvement of the gut microbiome? Ageing Res Rev 2023; 91:102056. [PMID: 37673131 DOI: 10.1016/j.arr.2023.102056] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/09/2023] [Accepted: 08/31/2023] [Indexed: 09/08/2023]
Abstract
Agmatine, an endogenous polyamine derived from L-arginine, elicits tremendous multimodal neuromodulant properties. Alterations in agmatinergic signalling are closely linked to the pathogeneses of several brain disorders. Importantly, exogenous agmatine has been shown to act as a potent neuroprotectant in varied pathologies, including brain ageing and associated comorbidities. The antioxidant, anxiolytic, analgesic, antidepressant and memory-enhancing activities of agmatine may derive from its ability to regulate several cellular pathways; including cell metabolism, survival and differentiation, nitric oxide signalling, protein translation, oxidative homeostasis and neurotransmitter signalling. This review briefly discusses mammalian metabolism of agmatine and then proceeds to summarize our current understanding of neuromodulation and neuroprotection mediated by agmatine. Further, the emerging exciting bidirectional links between agmatine and the resident gut microbiome and their implications for brain pathophysiology and ageing are also discussed.
Collapse
Affiliation(s)
- Priyanka Saha
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Subhrajita Panda
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Aayusha Holkar
- Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Rahul Vashishth
- Department of Biosciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Sandeep Singh Rana
- Department of Biosciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Mohanapriya Arumugam
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Ghulam Md Ashraf
- University of Sharjah, College of Health Sciences, and Research Institute for Medical and Health Sciences, Department of Medical Laboratory Sciences, Sharjah 27272, United Arab Emirates.
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia; Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon; Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Faraz Ahmad
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India.
| |
Collapse
|
2
|
Ułamek-Kozioł M, Czuczwar SJ, Januszewski S, Pluta R. Ketogenic Diet and Epilepsy. Nutrients 2019; 11:nu11102510. [PMID: 31635247 PMCID: PMC6836058 DOI: 10.3390/nu11102510] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 09/25/2019] [Accepted: 10/15/2019] [Indexed: 12/11/2022] Open
Abstract
Currently available pharmacological treatment of epilepsy has limited effectiveness. In epileptic patients, pharmacological treatment with available anticonvulsants leads to seizure control in <70% of cases. Surgical intervention can lead to control in a selected subset of patients, but still leaves a significant number of patients with uncontrolled seizures. Therefore, in drug-resistant epilepsy, the ketogenic diet proves to be useful. The purpose of this review was to provide a comprehensive overview of what was published about the benefits of ketogenic diet treatment in patients with epilepsy. Clinical data on the benefits of ketogenic diet treatment in terms of clinical symptoms and adverse reactions in patients with epilepsy have been reviewed. Variables that could have influenced the interpretation of the data were also discussed (e.g., gut microbiota). The data in this review contributes to a better understanding of the potential benefits of a ketogenic diet in the treatment of epilepsy and informs scientists, clinicians, and patients—as well as their families and caregivers—about the possibilities of such treatment. Since 1990, the number of publications on attempts to treat drug-resistant epilepsy with a ketogenic diet has grown so rapidly that it has become a challenge to see the overall trajectory and major milestones achieved in this field. In this review, we hope to provide the latest data from randomized clinical trials, practice guidelines, and new research areas over the past 2 years.
Collapse
Affiliation(s)
- Marzena Ułamek-Kozioł
- Laboratory of Ischemic and Neurodegenerative Brain Research, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland.
- First Department of Neurology, Institute of Psychiatry and Neurology, 02-957 Warsaw, Poland.
| | - Stanisław J Czuczwar
- Department of Pathophysiology, Medical University of Lublin, 20-090 Lublin, Poland.
| | - Sławomir Januszewski
- Laboratory of Ischemic and Neurodegenerative Brain Research, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland.
| | - Ryszard Pluta
- Laboratory of Ischemic and Neurodegenerative Brain Research, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland.
| |
Collapse
|
3
|
Taguchi T, Koh R, Takawira C, Rademacher N, Gilad GM, Aronson RD, Lopez MJ. Agmatine for Pain Management in Dogs With Coxofemoral Joint Osteoarthritis: A Pilot Study. Front Vet Sci 2018; 5:311. [PMID: 30631768 PMCID: PMC6315183 DOI: 10.3389/fvets.2018.00311] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 11/26/2018] [Indexed: 11/13/2022] Open
Abstract
Background: Pain from coxofemoral joint (CFJ) osteoarthritis (OA) characteristic of canine hip dysplasia (CHD) afflicts many dogs. Intervertebral disc (IVD) degeneration is a common CFJ OA comorbidity. Non-steroidal anti-inflammatory drug (NSAID) administration is standard for treatment of pain from degenerative joint disease. Potential side effects and tolerance from prolonged administration drive efforts to identify compounds that may be alternatives to or combined with NSAIDs. Agmatine, decarboxylated arginine, reportedly alleviates neuropathic pain, a likely component of OA pain. The objective of this study was to compare treatment response to agmatine and carprofen in dogs with varying degrees of CFJ OA with or without IVD degeneration and to test the hypothesis that agmatine improves hindlimb use comparably to carprofen and more than placebo. Methods: Nine hound-type dogs received oral carprofen (4.4 mg/kg, sid) for 7 days. Six months later, oral agmatine sulfate (25 mg/kg, bid) or placebo (hydroxypropyl methylcellulose, bid) was administered to the same dogs for 28 days with a 2 week washout period between treatments. Validated pain assessment scores were measured before treatment and every seven days throughout the treatment periods. Serum chemistry levels and ground reaction forces (GRF) were quantified before and after each treatment period. A board-certified radiologist quantified radiographic CFJ OA based on Orthopedic Foundation for Animals criteria and IVD degeneration on magnetic resonance images. GRFs were compared among treatments at each time point and among time points for each treatment. Results: There were no detectable adverse effects with any treatment. Significant results included improved GRFs in dogs with mild CFJ OA (N = 3) following agmatine administration compared to carprofen or placebo and a trend for improved GRFs in dogs with moderate CFJ OA (N = 2) following carprofen vs. agmatine or placebo. Neither agmatine nor carprofen improved GRFs in dogs with severe CFJ OA (N = 4). The GRFs improved in dogs with IVD degeneration (N = 3) following carprofen treatment compared to agmatine or placebo regardless of CFJ OA score, but no effect was observed in dogs with normal lumbar spines (N = 6). Conclusions: Results support agmatine over carprofen treatment to improve limb use in dogs with early or mild CFJ OA, while carprofen may be the better choice for dogs with moderate CFJ OA or IVD degeneration regardless of CFJ OA severity.
Collapse
Affiliation(s)
- Takashi Taguchi
- Laboratory for Equine and Comparative Orthopedic Research, Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Ronald Koh
- Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Catherine Takawira
- Laboratory for Equine and Comparative Orthopedic Research, Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Nathalie Rademacher
- Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Gad M Gilad
- Gilad & Gilad LLC, Henderson, NV, United States
| | - Randy D Aronson
- P.A.W.S. (Partners in Animal Wellness Services) Veterinary Center, Tucson, AZ, United States
| | - Mandi J Lopez
- Laboratory for Equine and Comparative Orthopedic Research, Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| |
Collapse
|
4
|
Xu W, Gao L, Li T, Shao A, Zhang J. Neuroprotective Role of Agmatine in Neurological Diseases. Curr Neuropharmacol 2018; 16:1296-1305. [PMID: 28786346 PMCID: PMC6251039 DOI: 10.2174/1570159x15666170808120633] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 07/17/2017] [Accepted: 07/27/2017] [Indexed: 12/31/2022] Open
Abstract
Background: Neurological diseases have always been one of the leading cause of mobility and mortality world-widely. However, it is still lacking efficient agents. Agmatine, an endogenous polyamine, exerts its diverse biological characteristics and therapeutic potential in varied aspects. Methods: This review would focus on the neuroprotective actions of agmatine and its potential mechanisms in the setting of neurological diseases. Results: Numerous studies had demonstrated the neuroprotective effect of agmatine in varied types of neurological diseases, including acute attack (stroke and trauma brain injury) and chronic neurodegenerative diseases (Parkinson's disease, Alz-heimer’s disease). The potential mechanism of agmatine induced neuroprotection includes anti-oxidation, anti-apoptosis, anti-inflammation, brain blood barrier (BBB) protection and brain edema prevention. Conclusions: The safety and low incidence of adverse effects indicate the vast potential therapeutic value of agmatine in the treatment of neurological diseases. However, most of the available studies relate to the agmatine are conducted in experi-mental models, more clinical trials are needed before the agmatine could be extensively clinically used
Collapse
Affiliation(s)
- Weilin Xu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Liansheng Gao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Tao Li
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Anwen Shao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jianmin Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Brain Research Institute, Zhejiang University, Hangzhou, Zhejiang, China.,Collaborative Innovation Center for Brain Science, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
5
|
Bahremand T, Payandemehr P, Riazi K, Noorian AR, Payandemehr B, Sharifzadeh M, Dehpour AR. Modulation of the anticonvulsant effect of swim stress by agmatine. Epilepsy Behav 2018; 78:142-148. [PMID: 29195160 DOI: 10.1016/j.yebeh.2017.11.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 10/29/2017] [Accepted: 11/05/2017] [Indexed: 02/07/2023]
Abstract
Agmatine is an endogenous l-arginine metabolite with neuroprotective effects in the stress-response system. It exerts anticonvulsant effects against several seizure paradigms. Swim stress induces an anticonvulsant effect by activation of endogenous antiseizure mechanisms. In this study, we investigated the interaction of agmatine with the anticonvulsant effect of swim stress in mice on pentylenetetrazole (PTZ)-induced seizure threshold. Then we studied the involvement of nitric oxide (NO) pathway and endogenous opioid system in that interaction. Swim stress induced an anticonvulsant effect on PTZ seizures which was opioid-independent in shorter than 1-min swim durations and opioid-dependent with longer swims, as it was completely reversed by pretreatment with naltrexone (NTX) (10mg/kg), an opioid receptor antagonist. Agmatine significantly enhanced the anticonvulsant effect of opioid-independent shorter swim stress, in which a combination of subthreshold swim stress duration (45s) and subeffective dose of agmatine (1mg/kg) revealed a significantly higher seizure threshold compared with either one. This effect was significantly reversed by NO synthase inhibitor NG-nitro-l-arginine (L-NAME (Nω-Nitro-L-arginine methyl ester), 5mg/kg), suggesting an NO-dependent mechanism, and was unaffected by NTX (10mg/kg), proving little role for endogenous opioids in the interaction. Our data suggest that pretreatment of animals with agmatine acts additively with short swim stress to exert anticonvulsant responses, possibly by mediating NO pathway.
Collapse
Affiliation(s)
- Taraneh Bahremand
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Pooya Payandemehr
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Kiarash Riazi
- Hotchkiss Brain Institute, Department of Physiology & Pharmacology, University of Calgary, Canada
| | - Ali Reza Noorian
- Stroke Program, Kaiser Permanente Orange County, Irvine, CA, United States
| | - Borna Payandemehr
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sharifzadeh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Synthesis, biological evaluation and molecular docking studies of novel quinuclidinone derivatives as potential antimicrobial and anticonvulsant agents. Med Chem Res 2017. [DOI: 10.1007/s00044-017-1904-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
7
|
Malawska K, Rak A, Gryzło B, Sałat K, Michałowska M, Żmudzka E, Lodarski K, Malawska B, Kulig K. Search for new potential anticonvulsants with anxiolytic and antidepressant properties among derivatives of 4,4-diphenylpyrrolidin-2-one. Pharmacol Rep 2016; 69:105-111. [PMID: 27915183 DOI: 10.1016/j.pharep.2016.09.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 09/21/2016] [Accepted: 09/21/2016] [Indexed: 12/14/2022]
Abstract
BACKGROUND The aim of this study was to synthesize a series of new N-Mannich bases derived from 4,4-diphenylpyrrolidin-2-one having differently substituted 4-phenylpiperazines as potential anticonvulsant agents with additional (beneficial) pharmacological properties. METHODS The target compounds 8-12 were prepared in one step from the 4-substituted phenylpiperazines, paraformaldehyde, and synthesized 4,4-diphenylpyrrolodin-2-one (7) by a Mannich-type reaction. The obtained compounds were assessed and tested for their anticonvulsant activity in two screening mouse models of seizures, i.e., the maximal electroshock (MES) test and in the subcutaneous pentylenetetrazole (scPTZ) test. The effect of these compounds on animals' motor coordination was measured in the rotarod test. A selected 4,4-diphenyl-1-((4-phenylpiperazin-1-yl)methyl)pyrrolidin-2-one (8) was evaluated in vivo for its anxiolytic- and antidepressant-like properties. Its impact on animals' locomotor activity was also evaluated. RESULTS Compound 8 showed protection (25%) in the MES and in the scPTZ tests at the dose of 100mg/kg and was not neurotoxic. In the four-plate test, compound 8 at the dose of 30mg/kg showed a statistically significant (p<0.05) anxiolytic-like activity. In the forced swim test, it reduced the immobility time by 24.3% (significant at p<0.05), which indicates its potential antidepressant-like properties. In the locomotor activity test, compound 8 significantly reduced animals' locomotor activity by 79.9%. CONCLUSION The results obtained make a new derivative of 4,4-diphenyl-1-((4-phenylpiperazin-1-yl)methyl)pyrrolidin-2-one (8) a promising lead structure for further development.
Collapse
Affiliation(s)
- Katarzyna Malawska
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 St., 30-688 Kraków, Poland
| | - Aleksandra Rak
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 St., 30-688 Kraków, Poland
| | - Beata Gryzło
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 St., 30-688 Kraków, Poland
| | - Kinga Sałat
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 St., 30-688 Kraków, Poland
| | - Małgorzata Michałowska
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 St., 30-688 Kraków, Poland; Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C St., 15-222 Białystok, Poland
| | - Elżbieta Żmudzka
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 St., 30-688 Kraków, Poland
| | - Krzysztof Lodarski
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 St., 30-688 Kraków, Poland
| | - Barbara Malawska
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 St., 30-688 Kraków, Poland.
| | - Katarzyna Kulig
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 St., 30-688 Kraków, Poland
| |
Collapse
|
8
|
Łączkowski KZ, Biernasiuk A, Baranowska-Łączkowska A, Zielińska S, Sałat K, Furgała A, Misiura K, Malm A. Synthesis, antimicrobial and anticonvulsant screening of small library of tetrahydro-2H-thiopyran-4-yl based thiazoles and selenazoles. J Enzyme Inhib Med Chem 2016; 31:24-39. [PMID: 27193505 DOI: 10.1080/14756366.2016.1186020] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Synthesis and investigation of antimicrobial activity of 22 novel thiazoles and selenazoles derived from dihydro-2H-thiopyran-4(3H)-one are presented. Additionally, anticonvulsant activity of six derivatives is examinated. Among the derivatives, compounds 4a-f, 4i, 4k, 4 l, 4n, 4o-s and 4v have very strong activity against Candida spp. with MIC = 1.95-15.62 μg/ml. In the case of compounds 4a-f, 4i, 4k, 4 l, 4n, 4o, 4r and 4s, the activity is very strong against some strains of Candida spp. isolated from clinical materials, with MIC = 0.98 to 15.62 μg/ml. Additionally, compounds 4n-v are found to be active against Gram-positive bacteria with MIC = 7.81-62.5 μg/ml. The results of anticonvulsant screening reveal that compounds 4a, 4b, 4m and 4n demonstrate a statistically significant anticonvulsant activity in the pentylenetetrazole model, whereas compounds 4a and 4n showed protection in 6-Hz psychomotor seizure model. Noteworthy, none of these compounds impaired animals' motor skills in the rotarod test. We also performed quantum chemical calculation of interaction and binding energies in complex of 4a with cyclodextrin.
Collapse
Affiliation(s)
- Krzysztof Z Łączkowski
- a Department of Chemical Technology and Pharmaceuticals , Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University , Bydgoszcz , Poland
| | - Anna Biernasiuk
- b Department of Pharmaceutical Microbiology , Faculty of Pharmacy, Medical University , Lublin , Poland
| | | | - Sylwia Zielińska
- a Department of Chemical Technology and Pharmaceuticals , Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University , Bydgoszcz , Poland
| | - Kinga Sałat
- d Chair of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University, Medical College , Krakow , Poland
| | - Anna Furgała
- d Chair of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University, Medical College , Krakow , Poland
| | - Konrad Misiura
- a Department of Chemical Technology and Pharmaceuticals , Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University , Bydgoszcz , Poland
| | - Anna Malm
- b Department of Pharmaceutical Microbiology , Faculty of Pharmacy, Medical University , Lublin , Poland
| |
Collapse
|
9
|
Łączkowski KZ, Sałat K, Misiura K, Podkowa A, Malikowska N. Synthesis and anticonvulsant activities of novel 2-(cyclopentylmethylene)hydrazinyl-1,3-thiazoles in mouse models of seizures. J Enzyme Inhib Med Chem 2016; 31:1576-82. [PMID: 27052195 DOI: 10.3109/14756366.2016.1158172] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Synthesis, characterization and investigation of in vivo anticonvulsant activities of 13 novel cyclopentanecarbaldehyde-based 2,4-disubstituted 1,3-thiazoles are presented. Their structures were determined using (1)H and (13)C NMR, FAB(+)-MS, HRMS and elemental analyses. The results of anticonvulsant screening reveal that seven intraperitoneally administered compounds: 3a, 3b, 3d, 3e, 3f, 3k and 3m containing F-, Cl-, Br-, CF3-, CH3- and adamantyl substituents demonstrated significant anticonvulsant activity in the pentylenetetrazole model with median effective doses (ED50) ≤ 20 mg/kg, respectively, which was approximately seven-fold lower than that reported for the reference drug, ethosuximide. Noteworthy, none of these compounds impaired animals' motor skills in the rotarod test.
Collapse
Affiliation(s)
- Krzysztof Z Łączkowski
- a Department of Chemical Technology and Pharmaceuticals , Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University , Bydgoszcz , Poland and
| | - Kinga Sałat
- b Chair of Pharmacodynamics, Faculty of Pharmacy, Medical College, Jagiellonian University , Krakow , Poland
| | - Konrad Misiura
- a Department of Chemical Technology and Pharmaceuticals , Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University , Bydgoszcz , Poland and
| | - Adrian Podkowa
- b Chair of Pharmacodynamics, Faculty of Pharmacy, Medical College, Jagiellonian University , Krakow , Poland
| | - Natalia Malikowska
- b Chair of Pharmacodynamics, Faculty of Pharmacy, Medical College, Jagiellonian University , Krakow , Poland
| |
Collapse
|
10
|
Kowalczyk P, Sałat K, Höfner GC, Mucha M, Rapacz A, Podkowa A, Filipek B, Wanner KT, Kulig K. Synthesis, biological evaluation and structure–activity relationship of new GABA uptake inhibitors, derivatives of 4-aminobutanamides. Eur J Med Chem 2014; 83:256-73. [DOI: 10.1016/j.ejmech.2014.06.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 06/04/2014] [Accepted: 06/12/2014] [Indexed: 11/17/2022]
|
11
|
|
12
|
The pharmacological importance of agmatine in the brain. Neurosci Biobehav Rev 2012; 36:502-19. [DOI: 10.1016/j.neubiorev.2011.08.006] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Revised: 06/23/2011] [Accepted: 08/18/2011] [Indexed: 01/28/2023]
|
13
|
Central effect of crocin on penicillin-induced epileptiform activity in rats. Pharmacol Rep 2012; 64:94-101. [DOI: 10.1016/s1734-1140(12)70735-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2011] [Revised: 10/17/2011] [Indexed: 11/23/2022]
|
14
|
The interaction of melatonin and agmatine on pentylenetetrazole-induced seizure threshold in mice. Epilepsy Behav 2011; 22:200-6. [PMID: 21840768 DOI: 10.1016/j.yebeh.2011.07.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 07/03/2011] [Accepted: 07/04/2011] [Indexed: 11/21/2022]
Abstract
Melatonin, the major hormone produced by the pineal gland, has a number of functions in mammals, for example, its function as an anticonvulsant. Agmatine, a biogenic amine formed by decarboxylation of L-arginine by arginine decarboxylase, also has anticonvulsant effects. This study investigated the effect of the interaction of melatonin and agmatine on seizure susceptibility in the mouse model of pentylenetetrazole (PTZ)-induced clonic seizures. Further, the researchers investigated the involvement of melatonin receptors in this interaction using luzindole, a ML(1/2) receptor antagonist and prazosin, a ML(3) receptor antagonist. Melatonin, at 40 and 80 mg/kg, and agmatine, at 10 and 20mg/kg, exerted anticonvulsant effects. Luzindole, at 1.25 and 2.5mg/kg, or prazosin, at 0.5mg/kg, did not change the seizure threshold as compared with that of vehicle-treated mice. The anticonvulsant effect of melatonin (40 and 80 mg/kg) was prevented by luzindole (2.5mg/kg) (P<0.001) but not prazosin (0.5mg/kg), indicating the possible involvement of ML(1/2) receptors in the anticonvulsant effect of melatonin. Agmatine (5mg/kg) significantly increased the anticonvulsant effect of both the noneffective dose (20mg/kg) (P<0.05) and the effective dose (80 mg/kg) (P<0.001) of melatonin. Luzindole (2.5mg/kg), but not prazosin (0.5mg/kg), decreased the anticonvulsant effect of agmatine (20mg/kg) (P<0.05). Luzindole (2.5mg/kg), but not prazosin (0.5mg/kg), also decreased the seizure threshold when agmatine (5mg/kg) was administered before melatonin (20mg/kg); the decrease was significant compared with that of the group that received only agmatine and melatonin (P<0.001). In conclusion, melatonin and agmatine exhibit an additive effect in decreasing pentylenetetrazole-induced seizure threshold in mice, probably through ML(1/2) receptors.
Collapse
|
15
|
Additive anticonvulsant effects of agmatine and lithium chloride on pentylenetetrazole-induced clonic seizure in mice: Involvement of α2-adrenoceptor. Eur J Pharmacol 2011; 666:93-9. [DOI: 10.1016/j.ejphar.2011.05.043] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2010] [Revised: 05/16/2011] [Accepted: 05/22/2011] [Indexed: 11/18/2022]
|
16
|
Bahremand A, Ziai P, Khodadad TK, Payandemehr B, Rahimian R, Ghasemi A, Ghasemi M, Hedayat T, Dehpour AR. Agmatine enhances the anticonvulsant effect of lithium chloride on pentylenetetrazole-induced seizures in mice: Involvement of L-arginine/nitric oxide pathway. Epilepsy Behav 2010; 18:186-192. [PMID: 20493779 DOI: 10.1016/j.yebeh.2010.04.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 04/09/2010] [Accepted: 04/13/2010] [Indexed: 11/29/2022]
Abstract
After nearly 60years, lithium is still the mainstay in the treatment of mood disorders. In addition to its antimanic and antidepressant effects, lithium also has anticonvulsant properties. Similar to lithium, agmatine plays a protective role in the central nervous system against seizures and has been reported to enhance the effect of different antiepileptic agents. Moreover, both agmatine and lithium have modulatory effects on the L-arginine/nitric oxide pathway. This study was designed to investigate: (1) whether agmatine and lithium exert a synergistic effect against clonic seizures induced by pentylenetetrazole and (2) whether or not this synergistic effect is mediated through inhibition of the L-arginine/nitric oxide pathway. In our study, acute administration of a single potent dose of lithium chloride (30mg/kg ip) increased seizure threshold, whereas pretreatment with a low and independently noneffective dose of agmatine (3mg/kg) potentiated a subeffective dose of lithium (10mg/kg). N(G)-L-arginine methyl ester (L-NAME, nonspecific nitric oxide synthase inhibitor) at 1 and 5mg/kg and 7-nitroindazole (7-NI, preferential neuronal nitric oxide synthase inhibitor) at 15 and 30mg/kg augmented the anticonvulsant effect of the noneffective combination of lithium (10mg/kg ip) and agmatine (1mg/kg), whereas several doses (20 and 40mg/kg) of aminoguanidine (inducible nitric oxide synthase inhibitor) failed to alter the seizure threshold of the same combination. Furthermore, pretreatment with independently noneffective doses (30 and 60mg/kg) of L-arginine (substrate for nitric oxide synthase) inhibited the potentiating effect of agmatine (3mg/kg) on lithium (10mg/kg). Our findings demonstrate that agmatine and lithium chloride have synergistic anticonvulsant properties that may be mediated through the L-arginine/nitric oxide pathway. In addition, the role of constitutive nitric oxide synthase versus inducible nitric oxide synthase is prominent in this phenomenon.
Collapse
Affiliation(s)
- Arash Bahremand
- Department of Pharmacology, School of Medicine, Medical Sciences/University of Tehran, Tehran, Iran
| | | | | | | | | | | | | | | | | |
Collapse
|