1
|
Yu SP, Choi E, Jiang MQ, Wei L. Acute and chronic excitotoxicity in ischemic stroke and late-onset Alzheimer's disease. Neural Regen Res 2025; 20:1981-1988. [PMID: 39101641 PMCID: PMC11691467 DOI: 10.4103/nrr.nrr-d-24-00398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/13/2024] [Accepted: 07/04/2024] [Indexed: 08/06/2024] Open
Abstract
Stroke and Alzheimer's disease are common neurological disorders and often occur in the same individuals. The comorbidity of the two neurological disorders represents a grave health threat to older populations. This review presents a brief background of the development of novel concepts and their clinical potentials. The activity of glutamatergic N-methyl-D-aspartate receptors and N-methyl-D-aspartate receptor-mediated Ca 2+ influx is critical for neuronal function. An ischemic insult induces prompt and excessive glutamate release and drastic increases of intracellular Ca 2+ mainly via N-methyl-D-aspartate receptors, particularly of those at the extrasynaptic site. This Ca 2+ -evoked neuronal cell death in the ischemic core is dominated by necrosis within a few hours and days known as acute excitotoxicity. Furthermore, mild but sustained Ca 2+ increases under neurodegenerative conditions such as in the distant penumbra of the ischemic brain and early stages of Alzheimer's disease are not immediately toxic, but gradually set off deteriorating Ca 2+ -dependent signals and neuronal cell loss mostly because of activation of programmed cell death pathways. Based on the Ca 2+ hypothesis of Alzheimer's disease and recent advances, this Ca 2+ -activated "silent" degenerative excitotoxicity evolves from years to decades and is recognized as a unique slow and chronic neuropathogenesis. The N-methyl-D-aspartate receptor subunit GluN3A, primarily at the extrasynaptic site, serves as a gatekeeper for the N-methyl-D-aspartate receptor activity and is neuroprotective against both acute and chronic excitotoxicity. Ischemic stroke and Alzheimer's disease, therefore, share an N-methyl-D-aspartate receptor- and Ca 2+ -mediated mechanism, although with much different time courses. It is thus proposed that early interventions to control Ca 2+ homeostasis at the preclinical stage are pivotal for individuals who are susceptible to sporadic late-onset Alzheimer's disease and Alzheimer's disease-related dementia. This early treatment simultaneously serves as a preconditioning therapy against ischemic stroke that often attacks the same individuals during abnormal aging.
Collapse
Affiliation(s)
- Shan Ping Yu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
- Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affairs Medical Center, Decatur, GA, USA
| | - Emily Choi
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Michael Q. Jiang
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
- Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affairs Medical Center, Decatur, GA, USA
| | - Ling Wei
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
2
|
Ferrer-Acosta Y, Rodriguez-Massó S, Pérez D, Eterovic VA, Ferchmin PA, Martins AH. Memantine has a nicotinic neuroprotective pathway in acute hippocampal slices after an NMDA insult. Toxicol In Vitro 2022; 84:105453. [PMID: 35944748 PMCID: PMC10026604 DOI: 10.1016/j.tiv.2022.105453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/14/2022] [Accepted: 08/03/2022] [Indexed: 10/15/2022]
Abstract
Memantine is a non-competitive antagonist with a moderate affinity to the N-methyl-d-Aspartate (NMDA) receptor. The present study assessed memantine's neuroprotective activity using electrophysiology of ex-vivo hippocampal slices. Interestingly, a nicotinic component was necessary for memantine's neuroprotection (NP). Memantine demonstrated a bell-shaped dose-response curve of NP against NMDA. Memantine was neuroprotective at concentrations below 3 μM, but the NP declined at higher concentrations (>3 μM) when memantine inhibits the NMDA receptor. Additional evidence that memantine NP is mediated by an alternate mechanism independent of the inhibition of the NMDA receptor is supported by its ability to protect neurons when applied before or after the NMDA insult and in the presence of D(-)-2-Amino-5-phosphonopentanoic acid (APV), the standard NMDA receptor inhibitor. We found several similarities between the memantine NP mechanism and the neuroprotective nicotinic drug, the 4R cembranoid. Memantine's NP requires the release of acetylcholine, the activation of α4β2, and is independent of MEK/MAPK signaling. Both 4R and memantine require the activation of PI3K/AKT for NP against NMDA-mediated excitotoxicity, although at different concentrations. In conclusion, our studies show memantine is neuroprotective through a nicotinic pathway, similar to the nicotinic drug 4R. This information leads to a better understanding of memantine's mechanisms of action and explains its dose-dependent effectiveness in Alzheimer's and other neurological disorders.
Collapse
Affiliation(s)
- Yancy Ferrer-Acosta
- Department of Neuroscience, Universidad Central del Caribe, Laurel Avenue 2U6, Lomas Verdes, Bayamón 00956, Puerto Rico.
| | - Sergio Rodriguez-Massó
- Department of Pharmacology and Toxicology, University of Puerto Rico, Medical Sciences Campus, Los Paseos Avenue, Guillermo Arbona Building, San Juan 00935, Puerto Rico.
| | - Dinely Pérez
- Department of Biochemistry, Universidad Central del Caribe Laurel Avenue, #100, Santa Juanita, Bayamón 00956, Puerto Rico
| | - Vesna A Eterovic
- Neuroprotection for Life, 480 E Village Dr., Carmel, IN 46032, USA
| | - P A Ferchmin
- Neuroprotection for Life, 480 E Village Dr., Carmel, IN 46032, USA
| | - Antonio Henrique Martins
- Department of Pharmacology and Toxicology, University of Puerto Rico, Medical Sciences Campus, Los Paseos Avenue, Guillermo Arbona Building, San Juan 00935, Puerto Rico.
| |
Collapse
|
3
|
Jantas D, Lech T, Gołda S, Pilc A, Lasoń W. New evidences for a role of mGluR7 in astrocyte survival: Possible implications for neuroprotection. Neuropharmacology 2018; 141:223-237. [PMID: 30170084 DOI: 10.1016/j.neuropharm.2018.08.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 08/14/2018] [Accepted: 08/26/2018] [Indexed: 01/18/2023]
Abstract
A specific activation of metabotropic glutamate receptor 7 (mGluR7) has been shown to be neuroprotective in various models of neuronal cell damage, however, its role in glia cell survival has not been studied, yet. Thus, we performed comparative experiments estimating protective effects of the mGluR7 allosteric agonist AMN082 in glia, neuronal and neuronal-glia cell cultures against various harmful stimuli. First, the transcript levels of mGluR7 and other subtypes of group II and III mGluRs in cortical neuronal, neuronal-glia and glia cell cultures have been measured by qPCR method. Next, we demonstrated that AMN082 with similar efficiency attenuated the glia cell damage evoked by staurosporine (St) and doxorubicin (Dox). The AMN082-mediated glioprotection was mGluR7-dependent and associated with decreased DNA fragmentation without involvement of caspase-3 inhibition. Moreover, the inhibitors of PI3K/Akt and MAPK/ERK1/2 pathways blocked the protective effect of AMN082. In neuronal and neuronal-glia cell cultures in the model of glutamate (Glu)- but not St-evoked cell damage, we showed a significant glia contribution to mGluR7-mediated neuroprotection. Finally, by using glia and neuronal cells derived from mGluR7+/+ and mGluR7-/- mice we demonstrated a higher cell-damaging effect of St and Dox in mGluR7-deficient glia but not in neurons (cerebellar granule cells). Our present data showed for the first time a glioprotective potential of AMN082 underlain by mechanisms involving the activation of PI3K/Akt and MAPK/ERK1/2 pathways and pro-survival role of mGluR7 in glia cells. These findings together with the confirmed neuroprotective properties of AMN082 justify further research on mGluR7-targeted therapies for various CNS disorders.
Collapse
Affiliation(s)
- Danuta Jantas
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12 Street, PL, 31-343, Kraków, Poland.
| | - Tomasz Lech
- Department of Neurobiology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12 Street, PL, 31-343, Kraków, Poland
| | - Sławomir Gołda
- Department of Molecular Neuropharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12 Street, PL, 31-343, Kraków, Poland
| | - Andrzej Pilc
- Department of Neurobiology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12 Street, PL, 31-343, Kraków, Poland
| | - Władysław Lasoń
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12 Street, PL, 31-343, Kraków, Poland
| |
Collapse
|
4
|
The neuroprotective effects of orthosteric agonists of group II and III mGluRs in primary neuronal cell cultures are dependent on developmental stage. Neuropharmacology 2016; 111:195-211. [PMID: 27600687 DOI: 10.1016/j.neuropharm.2016.09.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 08/12/2016] [Accepted: 09/02/2016] [Indexed: 11/22/2022]
Abstract
Activation of metabotropic glutamate receptors (mGluRs) modulates neuronal excitability. Here, we evaluated the neuroprotective potential of four structurally diverse activators of group II and III mGluRs: an orthosteric agonist of group II (LY354740), an orthosteric agonist of group III (ACPT-I), an allosteric agonist of mGluR7 (AMN082) and a positive allosteric modulator (PAM) of mGluR4 (VU0361737). Neurotoxicity was induced by the pro-apoptotic agents: staurosporine (St) and doxorubicin (Dox) or the excitotoxic factor glutamate (Glu). The effects were analyzed in primary hippocampal (HIP) and cerebellar granule cell (CGC) cultures at two developmental stages, at 7 and 12 days in vitro (DIV). The data reveal a general neuroprotective effect of group II and III mGluR activators against the St- and Glu- but not Dox-induced cell damage. We found that neuroprotective effects of group II and III mGluR orthosteric agonists (LY354740 and ACPT-I) were higher at 12 DIV when compared to 7 DIV cells. In contrast, the efficiency of allosteric mGluR agents (AMN082 and VU0361737) did not differ between 7 and 12 DIV in both, St and Glu models of neuronal cell damage. Interestingly, the protective effects of activators of group II and III mGluRs were blocked by relevant antagonists only against Glu-induced neurotoxicity. Moreover, the observed neuroprotective action of group II and III mGluR activators in the St model was associated with a decreased number of PI-positive cells and no alterations in the caspase-3 activity. Finally, we showed that MAPK/ERK pathway activation was potentially involved in the mechanism of ACPT-I- and AMN082-induced neuroprotection against the St-evoked cellular damage. Our comparative study demonstrated the developmental stage-dependent neuroprotective effect of orthosteric group II and III mGluR agonists. In comparison to allosteric modulators, orthosteric compounds may provide more specific tools for suppression of neuronal cell loss associated with various chronic neurodegenerative conditions. Our results also suggest that the inhibition of intracellular pathways mediating necrotic, rather than apoptotic cascades, may be involved in neuroprotective effects of activators of group II and III mGluRs.
Collapse
|
5
|
Gamdzyk M, Ziembowicz A, Bratek E, Salinska E. Combining hypobaric hypoxia or hyperbaric oxygen postconditioning with memantine reduces neuroprotection in 7-day-old rat hypoxia-ischemia. Pharmacol Rep 2016; 68:1076-83. [PMID: 27552063 DOI: 10.1016/j.pharep.2016.06.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 06/09/2016] [Accepted: 06/10/2016] [Indexed: 01/06/2023]
Abstract
BACKGROUND Perinatal hypoxia-ischemia causes brain injury in neonates, but a fully successful treatment to prevent changes in the brain has yet to be developed. The aim of this study was to evaluate the effect of combining memantine treatment with HBO (2.5 ATA) or HH (0.47 ATA) on neonatal hypoxia-ischemia brain injury. METHODS 7-day old rats were subjected to hypoxia-ischemia (H-I) and treated with combination of memantine and HBO or HH. The brain damage was evaluated by examination of infarct area and the number of apoptotic cells in CA1 region of hippocampus. Additionally, the level of reactive oxygen species (ROS) was measured. RESULTS Memantine, HBO or HH postconditioning applied at short time (1-6h) after H-I, and repeated for two subsequent days, resulted in significant neuroprotection. The reduction in ipsilateral hemisphere weight deficit and in the size of infarct area was observed 14days after H-I. A reduction in apoptosis and ROS level was also observed. Combining memantine with HBO or HH resulted in a loss of neuroprotection. CONCLUSIONS Our results show that, combining HBO or HH postconditioning with memantine produce no additive increase in the neuroprotective effect. On the contrary, combining the treatments resulted in lower neuroprotection in comparison to the effects of memantine, HBO or HH alone.
Collapse
Affiliation(s)
- Marcin Gamdzyk
- Department of Neurochemistry, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warszawa, Poland
| | - Apolonia Ziembowicz
- Department of Neurochemistry, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warszawa, Poland
| | - Ewelina Bratek
- Department of Neurochemistry, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warszawa, Poland
| | - Elzbieta Salinska
- Department of Neurochemistry, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warszawa, Poland.
| |
Collapse
|
6
|
Hu S, Cui W, Mak S, Tang J, Choi C, Pang Y, Han Y. Bis(propyl)-cognitin protects against glutamate-induced neuro-excitotoxicity via concurrent regulation of NO, MAPK/ERK and PI3-K/Akt/GSK3β pathways. Neurochem Int 2013; 62:468-77. [DOI: 10.1016/j.neuint.2013.01.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 01/14/2013] [Accepted: 01/19/2013] [Indexed: 02/02/2023]
|
7
|
Idrus NM, McGough NN, Spinetta MJ, Thomas JD, Riley EP. The effects of a single memantine treatment on behavioral alterations associated with binge alcohol exposure in neonatal rats. Neurotoxicol Teratol 2011; 33:444-50. [PMID: 21565269 PMCID: PMC3144286 DOI: 10.1016/j.ntt.2011.04.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 04/19/2011] [Accepted: 04/22/2011] [Indexed: 01/09/2023]
Abstract
BACKGROUND The third trimester in human fetal development represents a critical time of brain maturation referred to as the "brain growth spurt". This period occurs in rats postnatally, and exposure to ethanol during this time can increase the risk of impairments on a variety of cognitive and motor tasks. It has been proposed that one potential mechanism for the teratogenic effects of ethanol is NMDA receptor-mediated excitotoxicity during periods of ethanol withdrawal. In neonatal rats, antagonism of NMDA receptors during ethanol withdrawal, with drugs such as MK-801 and eliprodil, has been shown to mitigate some of the behavioral deficits induced by developmental ethanol exposure. The current study examined whether memantine, an NMDA receptor antagonist and a drug used clinically in Alzheimer's patients, would attenuate impairments associated with binge ethanol exposure in neonatal rats. METHODS On postnatal day 6, rats were exposed to 6 g/kg ethanol via intubation with controls receiving an isocaloric maltose dextrin solution. Twenty-one hours following the ethanol binge, rats received intraperitoneal injections of memantine at 0, 10, 15, or 20 mg/kg. Ethanol's teratogenic effects were assessed using multiple behavioral tasks: open field activity, parallel bars and spatial discrimination reversal learning. RESULTS Ethanol-treated rats were overactive in the open field and were impaired on both reversal learning and motor performance. Administration of 15 or 20 mg/kg memantine during withdrawal significantly attenuated ethanol's adverse effects on motor coordination, but did not significantly alter activity levels or improve the spatial learning deficits associated with neonatal alcohol exposure. CONCLUSION These results indicate that a single memantine administration during ethanol withdrawal can mitigate motor impairments but not spatial learning impairments or overactivity observed following a binge ethanol exposure during development in the rat.
Collapse
Affiliation(s)
- Nirelia M. Idrus
- Center for Behavioral Teratology, Department of Psychology, San Diego State University, 6330 Alvarado Ct., Ste 100, San Diego, CA 92120, USA
| | - Nancy N.H. McGough
- Center for Behavioral Teratology, Department of Psychology, San Diego State University, 6330 Alvarado Ct., Ste 100, San Diego, CA 92120, USA
| | - Michael J. Spinetta
- Center for Behavioral Teratology, Department of Psychology, San Diego State University, 6330 Alvarado Ct., Ste 100, San Diego, CA 92120, USA
| | - Jennifer D. Thomas
- Center for Behavioral Teratology, Department of Psychology, San Diego State University, 6330 Alvarado Ct., Ste 100, San Diego, CA 92120, USA
| | - Edward P. Riley
- Center for Behavioral Teratology, Department of Psychology, San Diego State University, 6330 Alvarado Ct., Ste 100, San Diego, CA 92120, USA
| |
Collapse
|
8
|
Idrus NM, McGough NNH, Riley EP, Thomas JD. Administration of memantine during ethanol withdrawal in neonatal rats: effects on long-term ethanol-induced motor incoordination and cerebellar Purkinje cell loss. Alcohol Clin Exp Res 2010; 35:355-64. [PMID: 21070252 DOI: 10.1111/j.1530-0277.2010.01351.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Alcohol consumption during pregnancy can damage the developing fetus, illustrated by central nervous system dysfunction and deficits in motor and cognitive abilities. Binge drinking has been associated with an increased risk of fetal alcohol spectrum disorders, likely due to increased episodes of ethanol withdrawal. We hypothesized that overactivity of the N-methyl-D-aspartate (NMDA) receptor during ethanol withdrawal leads to excitotoxic cell death in the developing brain. Consistent with this, administration of NMDA receptor antagonists (e.g., MK-801) during withdrawal can attenuate ethanol's teratogenic effects. The aim of this study was to determine whether administration of memantine, an NMDA receptor antagonist, during ethanol withdrawal could effectively attenuate ethanol-related deficits, without the adverse side effects associated with other NMDA receptor antagonists. METHODS Sprague-Dawley pups were exposed to 6.0 g/kg ethanol or isocaloric maltose solution via intubation on postnatal day 6, a period of brain development equivalent to a portion of the 3rd trimester. Twenty-four and 36 hours after ethanol, subjects were injected with 0, 10, or 15 mg/kg memantine, totaling doses of 0, 20, or 30 mg/kg. Motor coordination was tested on a parallel bar task and the total number of cerebellar Purkinje cells was estimated using unbiased stereology. RESULTS Alcohol exposure induced significant parallel bar motor incoordination and reduced Purkinje cell number. Memantine administration significantly attenuated both ethanol-associated motor deficits and cerebellar cell loss in a dose-dependent manner. CONCLUSIONS Memantine was neuroprotective when administered during ethanol withdrawal. These data provide further support that ethanol withdrawal contributes to fetal alcohol spectrum disorders.
Collapse
Affiliation(s)
- Nirelia M Idrus
- Department of Psychology, Center for Behavioral Teratology, San Diego State University, California 92120, USA
| | | | | | | |
Collapse
|
9
|
Zhang XN, Li JM, Yang Q, Feng B, Liu SB, Xu ZH, Guo YY, Zhao MG. Anti-apoptotic effects of hyperoside via inhibition of NR2B-containing NMDA receptors. Pharmacol Rep 2010; 62:949-55. [DOI: 10.1016/s1734-1140(10)70356-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2009] [Revised: 03/09/2010] [Indexed: 11/28/2022]
|
10
|
Intracerebroventricular administration of riluzole prevents morphine-induced apoptosis in the lumbar region of the rat spinal cord. Pharmacol Rep 2010; 62:664-73. [DOI: 10.1016/s1734-1140(10)70323-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Revised: 01/19/2010] [Indexed: 11/23/2022]
|