1
|
Moradi Jafari A, Hassanpourezatti M. Influence of methadone on the anticonvulsant efficacy of valproate sodium gabapentin against maximal electroshock seizure in mice by regulation of brain MDA TNF-α. Front Neurol 2022; 13:920107. [PMID: 36081867 PMCID: PMC9445582 DOI: 10.3389/fneur.2022.920107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/26/2022] [Indexed: 11/19/2022] Open
Abstract
Methadone is the most frequently used opioid therapy worldwide, with controversial effects on oxidative stress homeostasis. This study investigated the effects of intraperitoneal (i.p.) co-administration of methadone (0.1, 0.3, 1, and 3 mg/kg) and valproate sodium (300 mg/kg) or gabapentin (50 mg/kg) in the mice maximal electroshock (MES)-induced seizure model. The adverse effect of drugs was assessed using the chimney test. The levels of tumor necrosis factor-alpha (TNF-α) and malondialdehyde (MDA) contents were measured in mice brains after a single seizure. Administration of methadone alone resulted in a significant reduction in the duration of hind limb extension (HLE) than that in the control group. Methadone pretreatment at doses of 0.1 and 0.3 mg/kg i.p. decreased, and at doses of 1 and 3 mg/kg i.p. had an increasing effect on anticonvulsant efficacy of gabapentin. Pretreatment with all doses of methadone significantly decreased the valproate anticonvulsive efficacy. At doses of 1 and 3 mg/kg i.p. methadone per se increased brain MDA levels after MES-induced seizure. Administration of methadone (0.3 mg/kg i.p.) enhanced and at 3 mg/kg decreased gabapentin effect on brain MDA level, but their co-treatment did not lead to further increase in MDA. Methadone at 0.3–3 mg/kg enhanced the effect of sodium valproate on MDA levels in the brain, but at all doses significantly potentiated its effect on brain TNF-α levels. The drugs did not produce any side effects on motor coordination in experimental animals. In conclusion, methadone showed different effects on anticonvulsant actions of gabapentin and valproate through regulation of brain levels of MDA and TNF-α.
Collapse
|
2
|
Daneshparvar H, Sadat-Shirazi MS, Fekri M, Khalifeh S, Ziaie A, Esfahanizadeh N, Vousooghi N, Zarrindast MR. NMDA receptor subunits change in the prefrontal cortex of pure-opioid and multi-drug abusers: a post-mortem study. Eur Arch Psychiatry Clin Neurosci 2019; 269:309-315. [PMID: 29766293 DOI: 10.1007/s00406-018-0900-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 04/24/2018] [Indexed: 12/29/2022]
Abstract
Addiction is a chronic relapsing disorder and is one of the most important issues in the world. Changing the level of neurotransmitters and the activities of their receptors, play a major role in the pathophysiology of substance abuse disorders. It is well-established that N-methyl-D-aspartate receptors (NMDARs) play a significant role in the molecular basis of addiction. NMDAR has two obligatory GluN1 and two regionally localized GluN2 subunits. This study investigated changes in the protein level of GluN1, GluN2A, and GluN2B in the prefrontal cortex of drug abusers. The medial prefrontal cortex (mPFC), lateral prefrontal cortex (lPFC), and orbitofrontal cortex (OFC) were dissected from the brain of 101 drug addicts brains and were compared with the brains of non-addicts (N = 13). Western blotting technique was used to show the alteration in NMDAR subunits level. Data obtained using Western blotting technique showed a significant increase in the level of GluN1 and GluN2B, but not in GluN2A subunits in all the three regions (mPFC, lPFC, and OFC) of men whom suffered from addiction as compared to the appropriate controls. These findings showed a novel role for GluN1, GluN2B subunits, rather than the GluN2A subunit of NMDARs, in the pathophysiology of addiction and suggested their role in the drug-induced plasticity of NMDARs.
Collapse
Affiliation(s)
| | - Mitra-Sadat Sadat-Shirazi
- Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, P.O.Box: 13145-784, Iran.,Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Monir Fekri
- Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, P.O.Box: 13145-784, Iran
| | - Solmaz Khalifeh
- Cognitive and Neuroscience research Center (CNRC), Islamic Azad University, Tehran Medical Sciences Branch, Tehran, Iran
| | | | - Nasrin Esfahanizadeh
- Department of Periodontics, Tehran Dental Branch, Islamic Azad University, Tehran, Iran
| | - Nasim Vousooghi
- Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, P.O.Box: 13145-784, Iran.,Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad-Reza Zarrindast
- Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, P.O.Box: 13145-784, Iran. .,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Sharifipour M, Izadpanah E, Nikkhoo B, Zare S, Abdolmaleki A, Hassanzadeh K, Moradi F, Hassanzadeh K. A new pharmacological role for donepezil: attenuation of morphine-induced tolerance and apoptosis in rat central nervous system. J Biomed Sci 2014; 21:6. [PMID: 24455992 PMCID: PMC3906771 DOI: 10.1186/1423-0127-21-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 01/20/2014] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Tolerance to the analgesic effect of opioids is a pharmacological phenomenon that occurs after their prolonged administration. It has been shown that morphine-induced tolerance is associated with apoptosis in the central nervous system and neuroprotective agents which prevented apoptosis signaling could attenuate tolerance to the analgesic effects. On the other hand donepezil, an acetylcholinesterase inhibitor, has been reported to have neuroprotective effects. Therefore in this study, the effect of systemic administration of donepezil on morphine-induced tolerance and apoptosis in the rat cerebral cortex and lumbar spinal cord was evaluated. Various groups of rats received morphine (ip) and different doses of donepezil (0, 0.5, 1, 1.5 mg/kg/day). Nociception was assessed using tail flick apparatus. Tail flick latency was recorded when the rat shook its tail. For apoptosis assay other groups of rats received the above treatment and apoptosis was evaluated by in situ terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labeling (TUNEL) method. RESULTS The results showed that administration of donepezil (0.5, 1, 1.5 mg/kg, ip) delayed the morphine tolerance for 9, 12 and 17 days, respectively. Furthermore pretreatment injection of donepezil attenuated the number of apoptotic cells in the cerebral cortex and lumbar spinal cord compared to the control group. CONCLUSION In conclusion, we found that systemic administration of donepezil attenuated morphine-induced tolerance and apoptosis in the rat cerebral cortex and lumbar spinal cord.
Collapse
Affiliation(s)
- Mozhdeh Sharifipour
- Department of Biology, Faculty of Basic Science, Urmia University, Urmia, Iran
| | - Esmaeal Izadpanah
- Cellular and Molecular Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Department of Physiology and Pharmacology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Bahram Nikkhoo
- Department of Pathology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Samad Zare
- Department of Biology, Faculty of Basic Science, Urmia University, Urmia, Iran
| | - Ali Abdolmaleki
- Science and Research Branch, Islamic Azad University, Hamedan, Iran
| | - Katayoun Hassanzadeh
- Department of Physiology and Pharmacology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Farshid Moradi
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Kambiz Hassanzadeh
- Cellular and Molecular Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Department of Physiology and Pharmacology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
4
|
Hołuj M, Bisaga A, Popik P. Conditioned rewarding effects of morphine and methadone in mice pre-exposed to cocaine. Pharmacol Rep 2013; 65:1176-84. [DOI: 10.1016/s1734-1140(13)71475-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 05/13/2013] [Indexed: 11/16/2022]
|
5
|
|
6
|
Hassanzadeh K, Roshangar L, Habibi-asl B, Farajnia S, Izadpanah E, Nemati M, Arasteh M, Mohammadi S. Riluzole prevents morphine-induced apoptosis in rat cerebral cortex. Pharmacol Rep 2011; 63:697-707. [DOI: 10.1016/s1734-1140(11)70581-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 12/28/2010] [Indexed: 11/28/2022]
|
7
|
Abstract
This paper is the 32nd consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2009 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, 65-30 Kissena Blvd., Flushing, NY 11367, USA.
| |
Collapse
|
8
|
Liang J, Chen JH, Chen XH, Peng YH, Zheng XG. Gene expression of conditioned locomotion and context-specific locomotor sensitization controlled by morphine-associated environment. Behav Brain Res 2010; 216:321-31. [PMID: 20727914 DOI: 10.1016/j.bbr.2010.08.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 08/10/2010] [Accepted: 08/12/2010] [Indexed: 11/16/2022]
Abstract
The nucleus accumbens (NAc) is involved in contextual drug associations, which might be particularly important for environmental cue-induced relapse to drug seeking. In the present study, rats were first administered repeated morphine for 5 days (5 mg/kg, i.p.) in a contextually paired and unpaired design. After reexposure to the morphine-associated environment, which induced conditioned locomotor activity in the morphine-paired group, we performed a rat 27k 70-mer oligo array to profile gene expression in the NAc. One hundred fifty-five upregulated and 88 downregulated genes were found in the paired group compared with the unpaired group. Eight gene transcripts were then selected to confirm their alterations by quantitative real-time polymerase chain reaction (qRT-PCR). The identified genes generally play important roles in neuroactive receptor-ligand interactions, synapse plasticity, ion transport, and protein phosphorylation. Furthermore, the expression of the eight selected genes that were identified and confirmed to show significant fold changes in the first microarray experiment were again measured with qRT-PCR after morphine challenge (2 mg/kg, i.p.). As expected, 2 mg/kg morphine-induced context-specific sensitization. Meanwhile, mRNA expression of the selected genes showed marked upregulation in the morphine-paired group compared with the unpaired and acute groups. These results suggest that alterations in the expression of the identified genes in the NAc may contribute to the neuroplasticity underlying contextual cue-induced relapse to drug use.
Collapse
Affiliation(s)
- Jing Liang
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beishatan, Chaoyang District, Beijing 100101, PR China
| | | | | | | | | |
Collapse
|
9
|
Intracerebroventricular administration of riluzole prevents morphine-induced apoptosis in the lumbar region of the rat spinal cord. Pharmacol Rep 2010; 62:664-73. [DOI: 10.1016/s1734-1140(10)70323-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Revised: 01/19/2010] [Indexed: 11/23/2022]
|