1
|
Tokhi A, Ahmed Z, Arif M, Rehman NU, Sheibani V, Sewell RDE, Rauf K. Effects of 1-methyl-1, 2, 3, 4-tetrahydroisoquinoline on a diabetic neuropathic pain model. Front Pharmacol 2023; 14:1128496. [PMID: 37033637 PMCID: PMC10073420 DOI: 10.3389/fphar.2023.1128496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Abstract
Background: Neuropathy is a prevalent and debilitating complication of poorly managed diabetes, contributing towards poor quality of life, amputation risk, and increased mortality. The available therapies for diabetic neuropathic pain (DPN) have limitations in terms of efficacy, tolerability and patient compliance. Dysfunction in the peripheral and central monoaminergic system has been evidenced in various types of neuropathic and acute pain. The objective of the present study was to investigate 1-methyl 1, 2, 3, 4-tetrahydroisoquinoline (1MeTIQ), an endogenous amine found in human brain with a known neuroprotective profile, in a model of streptozotocin (STZ) induced neuropathic pain. Methods: Diabetic neuropathy in male BALB/c mice was induced by intraperitoneal injection of a single dose of STZ (200 mg/kg). Upon development of DPN after 4 weeks, mice were investigated for mechanical allodynia (von Frey filament pressure test) and thermal hyperalgesia (tail immersion test). Ondansetron (1.0 mg/kg i.p.), naloxone (3.0 mg/kg i.p.) and yohimbine (2.0 mg/kg i.p.) were used to elucidate the possible mechanism involved. Postmortem frontal cortical, striatal and hippocampal tissues were dissected and evaluated for changes in levels of dopamine, noradrenaline and serotonin using High-Performance Liquid Chromatography (HPLC) with UV detection. Results: Acute administration of 1MeTIQ (15-45 mg/kg i.p.) reversed streptozotocin-induced diabetic neuropathic static mechanical allodynia (von Frey filament pressure test) and thermal hyperalgesia (tail immersion test), these outcomes being comparable to standard gabapentin. Furthermore, HPLC analysis revealed that STZ-diabetic mice expressed lower concentrations of serotonin in all three brain regions examined, while dopamine was diminished in the striatum and 1MeTIQ reversed all these neurotransmitter modifications. These findings suggest that the antihyperalgesic/antiallodynic activity of 1MeTIQ may be mediated in part via supraspinal opioidergic and monoaminergic modulation since they were naloxone, yohimbine and ondansetron reversible. Conclusion: It was also concluded that acute treatment with 1MeTIQ ameliorated STZ-induced mechanical allodynia and thermal hyperalgesia and restored brain regionally altered serotonin and dopamine concentrations which signify a potential for 1MeTIQ in the management of DPN.
Collapse
Affiliation(s)
- Ahmed Tokhi
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Zainab Ahmed
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Mehreen Arif
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Naeem Ur Rehman
- Faculty of Pharmacy, Gomal University, Dera Ismail Khan, Pakistan
| | - Vahid Sheibani
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Robert D. E. Sewell
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, United Kingdom
| | - Khalid Rauf
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad, Pakistan
- *Correspondence: Khalid Rauf,
| |
Collapse
|
2
|
Kim S, Jang EY, Song SH, Kim JS, Ryu IS, Jeong CH, Lee S. Brain Microdialysis Coupled to LC-MS/MS Revealed That CVT-10216, a Selective Inhibitor of Aldehyde Dehydrogenase 2, Alters the Neurochemical and Behavioral Effects of Methamphetamine. ACS Chem Neurosci 2021; 12:1552-1562. [PMID: 33871963 DOI: 10.1021/acschemneuro.1c00039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Methamphetamine (MA), a potent central nervous system stimulant, mainly affects the brain dopaminergic and serotoninergic systems. Monoamine oxidase, catechol-O-methyltransferase, and aldehyde dehydrogenase 2 (ALDH2) are important enzymes in the metabolism of dopamine (DA) and serotonin (5-HT); however, the role of ALDH2 in MA addiction remains unclear. This study focused on the real-time changes in DA, 5-HT, and their metabolites, including 3,4-dihydroxyphenylacetic aldehyde and salsolinol, which are metabolites directly related to ALDH2, to examine the effects of the inhibition of ALDH2 on hyperlocomotion induced by MA. Locomotor activity was evaluated in rats after administration of MA and/or CVT-10216 (a selective ALDH2 inhibitor). Moreover, the simultaneous quantification of DA, 5-HT, and their metabolites in brain microdialysates of the rats was performed using a derivatization-assisted LC-MS/MS method after full validation. The validation results proved the method to be selective, sensitive, accurate, and precise, with acceptable linearity within calibration ranges. Intraperitoneal (i.p.) administration of 10 or 20 mg/kg of CVT-10216 significantly decreased MA-induced hyperlocomotion (1 mg/kg, i.p.). The analytical results of rat brain microdialysates demonstrated that the administration of CVT-10216 significantly downregulated DA levels, which were increased upon exposure to MA. Moreover, the increase in 3-methoxytyramine levels following coadministration of CVT-10216 and MA could play a potential role in antagonizing the hyperlocomotion induced by MA. All of these findings suggest that the inhibition of ALDH2 protects against MA-induced hyperlocomotion and has therapeutic potential in MA addiction.
Collapse
Affiliation(s)
- Seungju Kim
- College of Pharmacy, Keimyung University, 1095 Dalgubeoldaero, Dalseo-gu, Daegu 704-701, Republic of Korea
| | - Eun Young Jang
- Pharmacology and Drug Abuse Research Group, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daegeon 34114, Republic of Korea
| | - Sang-Hoon Song
- College of Pharmacy, Keimyung University, 1095 Dalgubeoldaero, Dalseo-gu, Daegu 704-701, Republic of Korea
| | - Ji Sun Kim
- Pharmacology and Drug Abuse Research Group, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daegeon 34114, Republic of Korea
| | - In Soo Ryu
- Pharmacology and Drug Abuse Research Group, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daegeon 34114, Republic of Korea
| | - Chul-Ho Jeong
- College of Pharmacy, Keimyung University, 1095 Dalgubeoldaero, Dalseo-gu, Daegu 704-701, Republic of Korea
| | - Sooyeun Lee
- College of Pharmacy, Keimyung University, 1095 Dalgubeoldaero, Dalseo-gu, Daegu 704-701, Republic of Korea
| |
Collapse
|
3
|
Białoń M, Chocyk A, Majcher-Maślanka I, Żarnowska M, Michalski K, Antkiewicz-Michaluk L, Wąsik A. 1MeTIQ and olanzapine, despite their neurochemical impact, did not ameliorate performance in fear conditioning and social interaction tests in an MK-801 rat model of schizophrenia. Pharmacol Rep 2021; 73:490-505. [PMID: 33403530 PMCID: PMC7994239 DOI: 10.1007/s43440-020-00209-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/01/2020] [Accepted: 12/07/2020] [Indexed: 12/22/2022]
Abstract
Background The aim of the present study was to evaluate the effect of 1MeTIQ on fear memory and social interaction in an MK-801-induced model of schizophrenia. The results obtained after administration of 1MeTIQ were compared with those obtained with olanzapine, an antipsychotic drug. Methods Sprague–Dawley rats received a single injection of MK-801 to induce behavioral disorders. 1MeTIQ was given either acutely in a single dose or chronically for 7 consecutive days. Olanzapine was administered once. In groups receiving combined treatments, 1MeTIQ or olanzapine was administered 20 min before MK-801 injection. Contextual fear conditioning was used to assess disturbances in fear memory (FM), and the sociability of the rats was measured in the social interaction test (SIT). Biochemical analysis was carried out to evaluate monoamine levels in selected brain structures after treatment. Results Our results are focused mainly on data obtained from neurochemical studies, demonstrating that 1MeTIQ inhibited the MK-801-induced reduction in dopamine levels in the frontal cortex and increased the 5-HT concentration. The behavioral tests revealed that acute administration of MK-801 caused disturbances in both the FM and SIT tests, while neither 1MeTIQ nor olanzapine reversed these deficits. Conclusion 1MeTIQ, although pharmacologically effective (i.e., it reverses MK-801-induced changes in monoamine activity), did not influence MK-801-induced social and cognitive deficits. Thus, our FM tests and SIT did not support the main pharmacological hypotheses that focus on dopamine system stabilization and dopamine–serotonin system interactions as probable mechanisms for inhibiting the negative symptoms of schizophrenia.
Collapse
Affiliation(s)
- Magdalena Białoń
- Department of Neurochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Cracow, Poland
| | - Agnieszka Chocyk
- Laboratory of Pharmacology and Brain Biostructure, Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Cracow, Poland
| | - Iwona Majcher-Maślanka
- Laboratory of Pharmacology and Brain Biostructure, Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Cracow, Poland
| | - Marcelina Żarnowska
- Department of Neurochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Cracow, Poland
| | - Krzysztof Michalski
- Department of Neurochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Cracow, Poland
| | | | - Agnieszka Wąsik
- Department of Neurochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Cracow, Poland.
| |
Collapse
|
4
|
Pro-cognitive effect of 1MeTIQ on recognition memory in the ketamine model of schizophrenia in rats: the behavioural and neurochemical effects. Psychopharmacology (Berl) 2020; 237:1577-1593. [PMID: 32076746 PMCID: PMC7239818 DOI: 10.1007/s00213-020-05484-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/12/2020] [Indexed: 01/07/2023]
Abstract
RATIONALE Schizophrenia is a mental illness which is characterised by positive and negative symptoms and by cognitive impairments. While the major prevailing hypothesis is that altered dopaminergic and/or glutamatergic transmission contributes to this disease, there is evidence that the noradrenergic system also plays a role in its major symptoms. OBJECTIVES In the present paper, we investigated the pro-cognitive effect of 1-methyl-1,2,3,4-tetrahydroisoquinoline (1MeTIQ) an endogenous neuroprotective compound, on ketamine-modelled schizophrenia in rats. METHODS We used an antagonist of NMDA receptors (ketamine) to model memory deficit symptoms in rats. Using the novel object recognition (NOR) test, we investigated the pro-cognitive effect of 1MeTIQ. Additionally, olanzapine, an atypical antipsychotic drug, was used as a standard to compare the pro-cognitive effects of the substances. In vivo microdialysis studies allowed us to verify the changes in the release of monoamines and their metabolites in the rat striatum. RESULTS Our study demonstrated that 1MeTIQ, similarly to olanzapine, exhibits a pro-cognitive effect in NOR test and enhances memory disturbed by ketamine treatment. Additionally, in vivo microdialysis studies have shown that ketamine powerfully increased noradrenaline release in the rat striatum, while 1MeTIQ and olanzapine completely antagonised this neurochemical effect. CONCLUSIONS 1MeTIQ, as a possible pro-cognitive drug, in contrast to olanzapine, expresses beneficial neuroprotective activity in the brain, increasing concentration of the extraneuronal dopamine metabolite, 3-methoxytyramine (3-MT), which plays an important physiological role in the brain as an inhibitory regulator of catecholaminergic activity. Moreover, we first demonstrated the essential role of noradrenaline release in memory disturbances observed in the ketamine-model of schizophrenia, and its possible participation in negative symptoms of the schizophrenia.
Collapse
|
5
|
Comparison of the effects of 1MeTIQ and olanzapine on performance in the elevated plus maze test and monoamine metabolism in the brain after ketamine treatment. Pharmacol Biochem Behav 2019; 181:17-27. [DOI: 10.1016/j.pbb.2019.04.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/04/2019] [Accepted: 04/05/2019] [Indexed: 12/16/2022]
|
6
|
Mlost J, Wąsik A, Starowicz K. Role of endocannabinoid system in dopamine signalling within the reward circuits affected by chronic pain. Pharmacol Res 2019; 143:40-47. [PMID: 30831242 DOI: 10.1016/j.phrs.2019.02.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/27/2019] [Accepted: 02/28/2019] [Indexed: 12/18/2022]
Abstract
The association between chronic pain, depression and anxiety has gained particular attention due to high rates of comorbidity. Recent data demonstrated that the mesolimbic reward circuitry is involved in the pathology of chronic pain. Interestingly, the mesolimbic reward circuit participates both in pain perception and in pain relief. The endocannabinoid system (ECS) has emerged as a highly relevant player involved in both pain perception and reward processing. Targeting ECS could become a novel treatment strategy for chronic pain patients. However, little is known about the underlying mechanisms of action of cannabinoids at the intersection of neurochemical changes in reward circuits and chronic pain. Because understanding the benefits and risks of cannabinoids is paramount, the aim of this review is to evaluate the state-of-art knowledge about the involvement of the ECS in dopamine signalling within the reward circuits affected by chronic pain.
Collapse
Affiliation(s)
- Jakub Mlost
- Institute of Pharmacology, Department of Neurochemistry, Polish Academy of Sciences, Kraków, Poland
| | - Agnieszka Wąsik
- Institute of Pharmacology, Department of Neurochemistry, Polish Academy of Sciences, Kraków, Poland
| | - Katarzyna Starowicz
- Institute of Pharmacology, Department of Neurochemistry, Polish Academy of Sciences, Kraków, Poland.
| |
Collapse
|
7
|
Mabrouk OS, Han JL, Wong JMT, Akil H, Kennedy RT, Flagel SB. The in Vivo Neurochemical Profile of Selectively Bred High-Responder and Low-Responder Rats Reveals Baseline, Cocaine-Evoked, and Novelty-Evoked Differences in Monoaminergic Systems. ACS Chem Neurosci 2018; 9:715-724. [PMID: 29161023 PMCID: PMC5906149 DOI: 10.1021/acschemneuro.7b00294] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Relative to bred low-responder (bLR) rats, bred high-responder (bHR) rats have an exaggerated locomotor response to a novel environment, take more risks, are more impulsive, and more likely to exhibit compulsive drug-seeking behaviors. These phenotypic differences in addiction-related behaviors and temperament have previously been associated with differences in neurotransmitter signaling, including the mesolimbic dopamine system. In this study, we applied advanced in vivo microdialysis sampling in the nucleus accumbens of bHRs and bLRs to assess differences in basal and stimulated neurochemical efflux more broadly. We used liquid chromatography-mass spectrometry measurements of dialysate samples to quantify a panel of 17 neurochemicals, including dopamine, norepinephrine, serotonin, histamine, glutamate, GABA, acetylcholine, adenosine, DOPAC, 3-MT, HVA, 5-HIAA, normetanephrine, taurine, serine, aspartate, and glycine. We also applied a stable isotope labeling technique to assess absolute baseline concentrations of dopamine and norepinephrine in the nucleus accumbens. Finally, we investigated the role of norepinephrine tone in the nucleus accumbens on the bHR phenotype. Our findings show that bHRs have elevated basal and cocaine-evoked dopamine and norepinephrine levels in the nucleus accumbens compared to those of bLRs. Furthermore, norepinephrine signaling in the nucleus accumbens appeared to be an important contributor to the bHR phenotype because bilateral perfusion of the α1 adrenergic receptor antagonist terazosin (10 μM) into the nucleus accumbens abolished the response of bHRs to novelty. These findings are the first to demonstrate a role for norepinephrine in the bHR phenotype. They reveal a positive relationship between dopamine and norepinephrine signaling in the nucleus accumbens in mediating the exaggerated response to novelty and point to norepinephrine signaling as a potential target in the treatment of impulse control disorders.
Collapse
Affiliation(s)
- Omar S. Mabrouk
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan
| | - John L. Han
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan
| | | | - Huda Akil
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, Michigan
| | - Robert T. Kennedy
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan
| | - Shelly B. Flagel
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
8
|
Khan MZ, Nawaz W. The emerging roles of human trace amines and human trace amine-associated receptors (hTAARs) in central nervous system. Biomed Pharmacother 2016; 83:439-449. [PMID: 27424325 DOI: 10.1016/j.biopha.2016.07.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 06/28/2016] [Accepted: 07/01/2016] [Indexed: 02/06/2023] Open
Abstract
Human trace amines (TAs) are endogenous compounds, previously almost ignored in human pathology for many reasons (difficulty of their measurement in biological fluids, unknown receptors for elusive amines), are now considered to play a significant role in synaptic transmission within the central nervous system (CNS) acting as neuromodulators. The recent discovery of a novel family of G-protein-coupled receptors (GPCRs) that includes individual members that are highly specific for TAs indicates a potential role for TAs as vertebrate neurotransmitters or neuromodulators, although the majority of these GPCRs so far have not been demonstrated to be activated by TAs. Human trace amine receptors (including TAAR1 TAAR2 TAAR5 TAAR6 TAAR8 TAAR9) are expressed in the brain and play significant physiological and neuropathological roles by activation of trace amines. We herein discuss the recent findings that provide insights into the functional roles of human trace amines (including P-Octopamine, β phenylethylamine, Tryptamine, Tyramine, Synephrine, 3-Iodothyronamine, 3-Methoxytyramine, N-Methyltyramine, N-Methylphenethylamine) in brain. Furthermore, we discuss the known functions of human trace amine receptors in brain.
Collapse
Affiliation(s)
- Muhammad Zahid Khan
- Department of Pharmacology, China Pharmaceutical University, Nanjing 210009, China.
| | - Waqas Nawaz
- School of basic medicine and clinical pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
9
|
1-Methyl-1,2,3,4-tetrahydroisoquinoline, an endogenous amine with unexpected mechanism of action: new vistas of therapeutic application. Neurotox Res 2013; 25:1-12. [PMID: 23719903 PMCID: PMC3889699 DOI: 10.1007/s12640-013-9402-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 05/06/2013] [Indexed: 12/21/2022]
Abstract
This review outlines the effects of 1,2,3,4-tetrahydroisoquinoline (TIQ) and its derivative, 1-methyl-1,2,3,4-tetrahydroisoquinoline (1MeTIQ), endogenous substances imbued with high pharmacological potential and broad spectrum of action in brain. 1MeTIQ has gained special interest as a neuroprotectant, and its ability to antagonize the behavioral syndrome produced by well-known neurotoxins (e.g., MPTP; rotenone). This review is thus focused on mechanisms of action of 1MeTIQ in behavioral, neurochemical, and molecular studies in rodents; also, effects of TIQ and 1MeTIQ on dopamine metabolism; and neuroprotective properties of TIQ and 1MeTIQ in vitro and in vivo. Finally, antiaddictive properties of 1MeTIQ will be described in cocaine self-administered rats. Findings implicate TIQ and especially its methyl derivative 1MeTIQ in unique and complex mechanisms of neuroprotection in various neurodegenerative illnesses of the central nervous system. We believe that MAO inhibition, free radicals scavenging properties, and antagonism to the glutamatergic system may play an essential role in neuroprotection. In addition, the results strongly support the view that 1MeTIQ has a considerable potential as a drug for combating substance abuse, through the attenuation of craving.
Collapse
|