1
|
Olivier V, Dunyach-Remy C, Corbeau P, Cristol JP, Sutra T, Burtey S, Lavigne JP, Moranne O. Factors of microinflammation in non-diabetic chronic kidney disease: a pilot study. BMC Nephrol 2020; 21:141. [PMID: 32316931 PMCID: PMC7175551 DOI: 10.1186/s12882-020-01803-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 04/12/2020] [Indexed: 12/16/2022] Open
Abstract
Background The relationships between digestive bacterial translocation, uremic toxins, oxidative stress and microinflammation in a population of chronic kidney disease (CKD) patients without metabolic nor inflammatory disease are unknown. Methods Bacterial translocation, uremic toxins, oxidative stress, and inflammation were assessed by measuring plasma levels of 16S ribosomal DNA (16S rDNA), p-cresyl sulfate (PCS), indoxyl sulfate (IS), indole acetic acid (IAA), F2-isoprostanes, hsCRP and receptor I of TNFα (RITNFα) in patients without metabolic nor inflammatory disease. 44 patients with CKD from stage IIIB to V and 14 controls with normal kidney function were included from the nephrology outpatients. 11 patients under hemodialysis (HD) were also included. Correlations between each factor and microinflammation markers were studied. Results 16S rDNA levels were not increased in CKD patients compared to controls but were decreased in HD compared to non-HD stage V patients (4.7 (3.9–5.3) vs 8.6 (5.9–9.7) copies/μl, p = 0.002). IS, PCS and IAA levels increased in HD compared to controls (106.3 (73.3–130.4) vs 3.17 (2.4–5.1) μmol/l, p < 0.0001 for IS; 174.2 (125–227.5) vs 23.7 (13.9–52.6) μmol/l, p = 0.006 for PCS; and 3.7 (2.6–4.6) vs 1.3 (1.0–1.9) μmol/l, p = 0.0002 for IAA). Urea increased in non-HD stage V patients compared to controls (27.6 (22.7–30.9) vs 5.4 (4.8–6.4) mmol/l, p < 0.0001) and was similar in HD and in non-HD stage V (19.3 (14.0–24.0) vs 27.6 (22.7–30.9) mmol/l, p = 0.7). RITNFα levels increased in HD patients compared to controls (12.6 (9.6–13.3) vs 1.1 (1.0–1.4) ng/ml, p < 0.0001); hsCRP levels increased in non-HD stage V patients compared to controls (2.9 (1.4–8.5) vs 0.8 (0.5–1.7) mg/l, p = 0.01) and remained stable in HD patients (2.9 (1.4–8.5) vs 5.1 (0.9–11.5) mg/l, p = 1). F2-isoprostanes did not differ in CKD patients compared to controls. Among uremic toxins, IS and urea were correlated to RITNFα (r = 0.8, p < 0.0001 for both). PCS, IS and urea were higher in patients with hsCRP≧5 mg/l (p = 0.01, 0.04 and 0.001 respectively). 16S rDNA, F2-isoprostanes were not correlated to microinflammation markers in our study. Conclusions In CKD patients without any associated metabolic nor inflammatory disease, only PCS, IS, and urea were correlated with microinflammation. Bacterial translocation was decreased in patients under HD and was not correlated to microinflammation.
Collapse
Affiliation(s)
- Valerie Olivier
- Department of Nephrology - Dialysis - Apheresis, Caremeau Hospital, University Montpellier-Nîmes, CHU Nîmes, Nimes, France.
| | - Catherine Dunyach-Remy
- Department of Microbiology and Hospital Hygiene, U1047, INSERM, University of Montpellier, CHU Nîmes, Nîmes, France
| | - Pierre Corbeau
- UMR9002, Institute for Human Genetics, CNRS-University of Montpellier, Montpellier, France
| | - Jean-Paul Cristol
- PhyMedExp, INSERM, CNRS, University of Montpellier, Montpellier, France.,Department of Biochemistry and Hormonology, CHU Montpellier, Montpellier, France
| | - Thibault Sutra
- PhyMedExp, INSERM, CNRS, University of Montpellier, Montpellier, France.,Department of Biochemistry and Hormonology, CHU Montpellier, Montpellier, France
| | - Stephane Burtey
- C2VN, INSERM 1263, INRA 1260, Aix-Marseille University, Marseille, France
| | - Jean-Philippe Lavigne
- Department of Microbiology and Hospital Hygiene, U1047, INSERM, University of Montpellier, CHU Nîmes, Nîmes, France
| | - Olivier Moranne
- Department of Nephrology - Dialysis - Apheresis, Caremeau Hospital, University Montpellier-Nîmes, CHU Nîmes, Nimes, France.,EA2415, Laboratoire Epidémiologie, Santé Publique, Biostatistiques, University of Montpellier, Nîmes, France
| |
Collapse
|
2
|
Olivier V, Dunyach-Remy C, Lavigne JP, Moranne O. [Micro-inflammation and digestive bacterial translocation in chronic kidney disease]. Nephrol Ther 2018; 14:135-141. [PMID: 29295767 DOI: 10.1016/j.nephro.2017.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 10/20/2017] [Indexed: 10/18/2022]
Abstract
Micro-inflammation has been recognized as a major factor associated with the poor prognosis of patients with chronic kidney disease. Those patients have an increased rate of pro-inflammatory markers like interleukin 6, C-Reactive protein, Tumor Necrosis Factor α and fibrinogen. Among multiple and complex causes of micro-inflammation the gut microbiota could be an important actor considering the dysbiosis in chronic kidney disease which would enhance the synthesis of uremic toxins with cardiovascular toxicity and the bacterial translocation. This review details the role of the gut microbiota in human pathology and in chronic kidney disease focusing on the bacterial translocation that could occur because of an impaired digestive permeability. This bacterial translocation could induce a chronic immune response and could take part in the raise of pro-inflammatory markers in chronic kidney disease. New therapeutic strategies aiming at preventing metabolic and cardiovascular complications could emerge from the understanding of the relationships between gut microbiota and host in this particular pathology.
Collapse
Affiliation(s)
- Valérie Olivier
- Service de néphrologie dialyse-aphérèse, CHU Caremeau, 30029 Nîmes cedex 09, France.
| | - Catherine Dunyach-Remy
- Inserm unité 1047, université de Montpellier, UFR de médecine, 30908 Nîmes cedex 02, France; Service de microbiologie, CHU Caremeau, 30029 Nîmes cedex 09, France
| | - Jean-Philippe Lavigne
- Inserm unité 1047, université de Montpellier, UFR de médecine, 30908 Nîmes cedex 02, France; Service de microbiologie, CHU Caremeau, 30029 Nîmes cedex 09, France
| | - Olivier Moranne
- Service de néphrologie dialyse-aphérèse, CHU Caremeau, 30029 Nîmes cedex 09, France
| |
Collapse
|