1
|
Terescenco D, Savary G, Picard C, Hucher N. Topical pickering emulsion versus classical excipients: A study of the residual film on the human skin. Int J Pharm 2024; 657:124130. [PMID: 38631484 DOI: 10.1016/j.ijpharm.2024.124130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/13/2024] [Accepted: 04/14/2024] [Indexed: 04/19/2024]
Abstract
The interest in Pickering emulsions is based on the possibility of replacing classical emulsifiers with solid particles. These emulsions are very attractive in the pharmaceutical field for their stability virtues and as a vehicle to deliver active ingredients. The study aimed to analyze the properties of the residual film of the Pickering emulsions on the human skin compared to conventional systems. For this project, three types of solid particles were used: titanium dioxide, zinc oxide and silicon dioxide. All of them are capable of stabilizing the oil/water interface and thus forming totally emulsified systems. To create an emulsion of reference, a classical surfactant was used as an excipient. Complementary systems containing both particles and the emulsifier were also analyzed. Then, a combined approach between physicochemical and biometrological in vivo analysis was employed. The study proved that Pickering emulsions stabilized by the metal oxides were distinct from the reference emulsion in terms of droplet sizes and organization, rheological and textural responses. Consequently, it impacted the properties of the residual film once the product was applied to the skin. The particle-stabilized emulsions formed a hydrophobic film counter to conventional excipients. Also, the Friction parameter (or the roughness of the film) was directly linked to the quantity of the particles used in the formulation and their perception on the skin surface. The use of the particles blurs the glossy effect of the oil phase. Finally, it was observed that the appearance of the residual film was impacted by the type of the particle, namely TiO2 and ZnO particles.
Collapse
Affiliation(s)
- Daria Terescenco
- Université Le Havre Normandie, Normandie Univ, URCOM UR 3221, F-76600 Le Havre, France.
| | - Geraldine Savary
- Université Le Havre Normandie, Normandie Univ, URCOM UR 3221, F-76600 Le Havre, France.
| | - Celine Picard
- Université Le Havre Normandie, Normandie Univ, URCOM UR 3221, F-76600 Le Havre, France.
| | - Nicolas Hucher
- Université Le Havre Normandie, Normandie Univ, URCOM UR 3221, F-76600 Le Havre, France.
| |
Collapse
|
2
|
Bushra R, Ahmad M, Seidi F, Qurtulen, Song J, Jin Y, Xiao H. Polysaccharide-based nanoassemblies: From synthesis methodologies and industrial applications to future prospects. Adv Colloid Interface Sci 2023; 318:102953. [PMID: 37399637 DOI: 10.1016/j.cis.2023.102953] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/23/2023] [Accepted: 06/19/2023] [Indexed: 07/05/2023]
Abstract
Polysaccharides, due to their remarkable features, have gained significant prominence in the sustainable production of nanoparticles (NPs). High market demand and minimal production cost, compared to the chemically synthesised NPs, demonstrate a drive towards polysaccharide-based nanoparticles (PSNPs) benign to environment. Various approaches are used for the synthesis of PSNPs including cross-linking, polyelectrolyte complexation, and self-assembly. PSNPs have the potential to replace a wide diversity of chemical-based agents within the food, health, medical and pharmacy sectors. Nevertheless, the considerable challenges associated with optimising the characteristics of PSNPs to meet specific targeting applications are of utmost importance. This review provides a detailed compilation of recent accomplishments in the synthesis of PSNPs, the fundamental principles and critical factors that govern their rational fabrication, as well as various characterisation techniques. Noteworthy, the multiple use of PSNPs in different disciplines such as biomedical, cosmetics agrochemicals, energy storage, water detoxification, and food-related realms, is accounted in detail. Insights into the toxicological impacts of the PSNPs and their possible risks to human health are addressed, and efforts made in terms of PSNPs development and optimising strategies that allow for enhanced delivery are highlighted. Finally, limitations, potential drawbacks, market diffusion, economic viability and future possibilities for PSNPs to achieve widespread commercial use are also discussed.
Collapse
Affiliation(s)
- Rani Bushra
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Joint International Research Lab of Lignocellulosic Functional Materials and Provincial Key Lab of Pulp and Paper Sci & Tech, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Mehraj Ahmad
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; College of Light Industry and Food, Department of Food Science and Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Joint International Research Lab of Lignocellulosic Functional Materials and Provincial Key Lab of Pulp and Paper Sci & Tech, Nanjing Forestry University, Nanjing 210037, Jiangsu, China.
| | - Farzad Seidi
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Joint International Research Lab of Lignocellulosic Functional Materials and Provincial Key Lab of Pulp and Paper Sci & Tech, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Qurtulen
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Junlong Song
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Joint International Research Lab of Lignocellulosic Functional Materials and Provincial Key Lab of Pulp and Paper Sci & Tech, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Yongcan Jin
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Joint International Research Lab of Lignocellulosic Functional Materials and Provincial Key Lab of Pulp and Paper Sci & Tech, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| |
Collapse
|
3
|
Huang Z, Moiseev RV, Melides SS, Bae W, Jurewicz I, Khutoryanskiy VV, Keddie JL. Pickering emulsions stabilised with oligoglycine-functionalised nanodiamond as a model system for ocular drug delivery applications. SOFT MATTER 2023; 19:5513-5526. [PMID: 37434584 DOI: 10.1039/d3sm00495c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
Oil-in-water emulsions, stabilised with conventional surfactants, are commonly used in eye drops for ocular drug delivery. However, the presence of surfactants can sometimes irritate tissues. Furthermore, conventional emulsions often have poor retention on ocular tissue. Pickering emulsions stabilised with nanoparticles have been gaining attention in recent years for a range of biomedical applications because of their biocompatibility. Here, Pickering emulsions were evaluated for the first time for the confinement of organic components for potential application in ocular drug delivery. For a model system, we used nanodiamond (ND) nanoparticles functionalised with covalently-bonded two-tail (2T) oligoglycine C10(NGly4)2 to make Pickering oil-in-water emulsions, which were stable over three months of storage under neutral pH. We proved the non-toxicity of ND-2T Pickering emulsions, comparable to buffer solution, via an ex vivo bovine corneal permeability and opacity test. The retention of the oil phase in the ND-2T stabilised emulsions on corneal tissue is significantly increased because of the mucoadhesive properties arising from the positively-charged terminal amino groups of 2T. Our formulated emulsions have a surface tension, pH and salt concentration comparable to that of tear fluid. The high retention of the ND-2T-stabilised emulsions on the corneal surface, in combination with their non-toxicity, gives them distinct advantages for ocular drug delivery. The principles of this model system could be applied in the future design of a range of formulations for drug delivery.
Collapse
Affiliation(s)
- Zhiwei Huang
- School of Mathematics and Physics, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, GU2 7XH, UK.
| | - Roman V Moiseev
- Reading School of Pharmacy, University of Reading, Whiteknights, Reading, RG6 6DX, UK
- Physicochemical, Ex Vivo and Invertebrates Tests and Analysis Centre (PEVITAC), University of Reading, Whiteknights, Reading, RG6 6DX, UK
| | - Solomon S Melides
- School of Mathematics and Physics, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, GU2 7XH, UK.
| | - Wooli Bae
- School of Mathematics and Physics, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, GU2 7XH, UK.
| | - Izabela Jurewicz
- School of Mathematics and Physics, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, GU2 7XH, UK.
| | - Vitaliy V Khutoryanskiy
- Reading School of Pharmacy, University of Reading, Whiteknights, Reading, RG6 6DX, UK
- Physicochemical, Ex Vivo and Invertebrates Tests and Analysis Centre (PEVITAC), University of Reading, Whiteknights, Reading, RG6 6DX, UK
| | - Joseph L Keddie
- School of Mathematics and Physics, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, GU2 7XH, UK.
| |
Collapse
|
4
|
Benyaya M, Bolzinger MA, Chevalier Y, Ensenat S, Bordes C. Pickering emulsions stabilized with differently charged particles. SOFT MATTER 2023. [PMID: 37318280 DOI: 10.1039/d3sm00305a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
For addressing health issues and ecological concerns, the cosmetic and pharmaceutical industries are facing the challenge of designing emulsions without the use of surfactants. Emulsions stabilized by colloidal particles, known as Pickering emulsions, are promising in this matter. In this article, three different types of particles (neutral, anionic and cationic) are used alone or in binary mixtures as stabilizers of Pickering emulsions. The influence of the particles' charge on the emulsions' properties and the synergies between the different types of particles are studied. It is demonstrated that the kinetics of adsorption of the particles at the water/oil interface control the coverage and their organization at the droplet surface, rather than their interactions after adsorption. Binary mixtures of differently charged particles are a powerful way to control the droplet coverage and the particle loading in the emulsions. In particular, the combination of anionic and cationic particles led to smaller droplets and higher particle coverage of emulsion droplets.
Collapse
Affiliation(s)
- Mathis Benyaya
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5007, Laboratoire d'Automatique, de Génie des Procédés et de Génie Pharmaceutique (LAGEPP), 43 bd du 11 Novembre 1918, 69622, Villeurbanne, France.
| | - Marie-Alexandrine Bolzinger
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5007, Laboratoire d'Automatique, de Génie des Procédés et de Génie Pharmaceutique (LAGEPP), 43 bd du 11 Novembre 1918, 69622, Villeurbanne, France.
| | - Yves Chevalier
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5007, Laboratoire d'Automatique, de Génie des Procédés et de Génie Pharmaceutique (LAGEPP), 43 bd du 11 Novembre 1918, 69622, Villeurbanne, France.
| | - Salomé Ensenat
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5007, Laboratoire d'Automatique, de Génie des Procédés et de Génie Pharmaceutique (LAGEPP), 43 bd du 11 Novembre 1918, 69622, Villeurbanne, France.
| | - Claire Bordes
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5007, Laboratoire d'Automatique, de Génie des Procédés et de Génie Pharmaceutique (LAGEPP), 43 bd du 11 Novembre 1918, 69622, Villeurbanne, France.
| |
Collapse
|
5
|
Hazt B, Pereira Parchen G, Fernanda Martins do Amaral L, Rondon Gallina P, Martin S, Hess Gonçalves O, Alves de Freitas R. Unconventional and conventional Pickering emulsions: Perspectives and challenges in skin applications. Int J Pharm 2023; 636:122817. [PMID: 36905974 DOI: 10.1016/j.ijpharm.2023.122817] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 02/27/2023] [Accepted: 03/06/2023] [Indexed: 03/13/2023]
Abstract
Pickering emulsions are free from molecular and classical surfactants and are stabilized by solid particles, creating long-term stability against emulsion coalescence. Additionally, these emulsions are both environmentally and skin-friendly, creating new and unexplored sensorial perceptions. Although the literature mostly describes conventional emulsions (oil-in-water), there are unconventional emulsions (multiple, oil-in-oil and water-in-water) with excellent prospects and challenges in skin application as oil-free systems, permeation enhancers and topical drug delivery agents, with various possibilities in pharmaceutical and cosmetic products. However, up to now, these conventional and unconventional Pickering emulsions are not yet available as commercial products. This review brings to the discussion some important aspects such as the use of phases, particles, rheological and sensorial perception, as well as current trends in the development of these emulsions.
Collapse
Affiliation(s)
- Bianca Hazt
- Chemistry Department, Universidade Federal do Paraná (UFPR), R. Coronel F. H. dos Santos, 210, Curitiba - 81531-980, PR, Brazil.
| | - Gabriela Pereira Parchen
- Department of Pharmacy, Universidade Federal do Paraná (UFPR), Av. Pref. Lothário Meissner, 632, Curitiba - 80210-170, PR, Brazil.
| | | | - Patrícia Rondon Gallina
- Department of Pharmacy, Universidade Federal do Paraná (UFPR), Av. Pref. Lothário Meissner, 632, Curitiba - 80210-170, PR, Brazil
| | - Sandra Martin
- Mackenzie School of Medicine, R. Padre Anchieta, 2770, Curitiba - 80730-000, PR, Brazil
| | - Odinei Hess Gonçalves
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Post-Graduation Program of Food Technology, Federal University of Technology - Paraná, Via Rosalina Maria Dos Santos, 1233, Campo Mourão - 87301-899, PR, Brazil.
| | - Rilton Alves de Freitas
- Department of Pharmacy, Universidade Federal do Paraná (UFPR), Av. Pref. Lothário Meissner, 632, Curitiba - 80210-170, PR, Brazil.
| |
Collapse
|
6
|
Destabilization of Pickering emulsions by interfacial transport of mutually soluble solute. J Colloid Interface Sci 2023; 633:166-176. [PMID: 36442288 DOI: 10.1016/j.jcis.2022.10.133] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 11/19/2022]
Abstract
HYPOTHESIS Pickering emulsions (PEs) once formed are highly stable because of very high desorption energies (∼107 kBT) associated with particles adsorbed to the interfaces. The destabilization of PEs is required in many instances for recovery of valuable chemicals, products and active compounds. We propose to exploit interfacial instabilities develop by the addition of different types of solutes to PEs as a route to engineer their destabilization. EXPERIMENTS PEs stabilized by (i) spherical particles, (ii) non-spherical particles, (iii) oppositely charged particle-particle mixtures, and (iv) oppositely charged particle-polyelectrolyte mixtures are formulated. Different types of solutes are added to these highly stable PEs and the macroscopic as well as microscopic changes induced in the PEs is recorded by visual observation and bright field optical microscopy. FINDINGS Our results point to a simple yet robust method to induce destabilization of PEs by transiently perturbing the oil-water interface by transport of a mutually soluble solute across the interface. The generality of the method is demonstrated for different kind of solutes and stabilizers including particles of different sizes (nm to µm), shapes (sphere, spheroids, spherocylinders) and types (polystyrene, metal oxides). The method works for both oil-in-water (o/w) and water-in-oil (w/o) PEs with different kinds of non-polar solvents as oil-phase. However, the method fails when the solute is insoluble in one of the phases of PEs. The study opens up a new approach to destabilization of particle stabilized emulsions.
Collapse
|
7
|
Reversible demulsification and emulsification of surfactant emulsions regulated by light-responsive azo functionalized copper nanoclusters. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
de Carvalho-Guimarães FB, Correa KL, de Souza TP, Rodríguez Amado JR, Ribeiro-Costa RM, Silva-Júnior JOC. A Review of Pickering Emulsions: Perspectives and Applications. Pharmaceuticals (Basel) 2022; 15:1413. [PMID: 36422543 PMCID: PMC9698490 DOI: 10.3390/ph15111413] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/18/2022] [Accepted: 08/31/2022] [Indexed: 09/10/2023] Open
Abstract
Pickering emulsions are systems composed of two immiscible fluids stabilized by organic or inorganic solid particles. These solid particles of certain dimensions (micro- or nano-particles), and desired wettability, have been shown to be an alternative to conventional emulsifiers. The use of biodegradable and biocompatible stabilizers of natural origin, such as clay minerals, presents a promising future for the development of Pickering emulsions and, with this, they deliver some advantages, especially in the area of biomedicine. In this review, the effects and characteristics of microparticles in the preparation and properties of Pickering emulsions are presented. The objective of this review is to provide a theoretical basis for a broader type of emulsion, in addition to reviewing the main aspects related to the mechanisms and applications to promote its stability. Through this review, we highlight the use of this type of emulsion and its excellent properties as permeability promoters of solid particles, providing ideal results for local drug delivery and use in Pickering emulsions.
Collapse
Affiliation(s)
| | - Kamila Leal Correa
- Laboratory of Pharmaceutical and Cosmetic R&D, College of Pharmacy, Federal University of Pará, Belém 66075-110, Brazil
| | - Tatiane Pereira de Souza
- Laboratory of Innovation and Development in Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Federal University of Amazonas, Manaus 69077-000, Brazil
| | - Jesus Rafael Rodríguez Amado
- Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, Food and Nutrition, Federal University of Mato-Grosso do Sul, Campo Grande 79070-900, Brazil
| | - Roseane Maria Ribeiro-Costa
- Laboratory of Pharmaceutical Nanotechnology, College of Pharmacy, Federal University of Pará, Belém 66075-110, Brazil
| | | |
Collapse
|
9
|
Tercki D, Orlińska B, Słotwińska D, Sajdak M. Pickering emulsions as an alternative to traditional polymers: trends and applications. REV CHEM ENG 2022. [DOI: 10.1515/revce-2022-0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
Pickering emulsions have gained increasing interest because of their unique features, including easy preparation and stability. In contrast to classical emulsions, in Pickering emulsions, the stabilisers are solid micro/nanoparticles that accumulate on the surfaces of liquid phases. In addition to their stability, Pickering emulsions are less toxic and responsive to external stimuli, which make them versatile material that can be flexibly designed for specific applications, e.g., catalysis, pharmaceuticals and new materials. The potential toxicity and adverse impact on the environment of classic emulsions is related to the extractable nature of the water emulsifier. The impacts of some emulsifiers are related to not only their chemical natures but also their stabilities; after base or acid hydrolysis, some emulsifiers can be turned into sulphates and fatty alcohols, which are dangerous to aquatic life. In this paper, recent research on Pickering emulsion preparations is reviewed, with a focus on styrene as one of the main emulsion components. Moreover, the effects of the particle type and morphology and the critical parameters of the emulsion production process on emulsion properties and applications are discussed. Furthermore, the current and prospective applications of Pickering emulsion, such as in lithium-ion batteries and new vaccines, are presented.
Collapse
Affiliation(s)
- Dariusz Tercki
- Department of Organic Chemical Technology and Petrochemistry , PhD School, Silesian University of Technology , Akademicka 2a, 44-100 Gliwice , Poland
- Synthos S.A. , ul. Chemików 1, 32-600 Oświęcim , Poland
| | - Beata Orlińska
- Department of Organic Chemical Technology and Petrochemistry , Silesian University of Technology , B. Krzywoustego 4, 44-100 Gliwice , Poland
| | | | - Marcin Sajdak
- Department of Air Protection, Silesian University of Technology , S. Konarskiego 22B, 44-100 Gliwice , Poland
- School of Chemical Engineering, University of Birmingham , Edgbaston , Birmingham B15 2TT , UK
| |
Collapse
|
10
|
Chan DHH, Hunter SJ, Neal TJ, Lindsay C, Taylor P, Armes SP. Adsorption of sterically-stabilized diblock copolymer nanoparticles at the oil-water interface: effect of charged end-groups on interfacial rheology. SOFT MATTER 2022; 18:6757-6770. [PMID: 36040127 DOI: 10.1039/d2sm00835a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The RAFT aqueous emulsion polymerization of either methyl methacrylate (MMA) or benzyl methacrylate (BzMA) is conducted at 70 °C using poly(glycerol monomethacrylate) (PGMA) as a water-soluble precursor to produce sterically-stabilized diblock copolymer nanoparticles of approximately 30 nm diameter. Carboxylic acid- or morpholine-functional RAFT agents are employed to confer anionic or cationic functionality at the ends of the PGMA stabilizer chains, with a neutral RAFT agent being used as a control. Thus the electrophoretic footprint of such minimally-charged model nanoparticles can be adjusted simply by varying the solution pH. Giant (mm-sized) aqueous droplets containing such nanoparticles are then grown within a continuous phase of n-dodecane and a series of interfacial rheology measurements are conducted. The interfacial tension between the aqueous phase and n-dodecane is strongly dependent on the charge of the terminal group on the stabilizer chains. More specifically, neutral nanoparticles produce a significantly lower interfacial tension than either cationic or anionic nanoparticles. Moreover, adsorption of neutral nanoparticles at the n-dodecane-water interface produces higher interfacial elastic moduli than that observed for charged nanoparticles. This is because neutral nanoparticles can adsorb at much higher surface packing densities owing to the absence of electrostatic repulsive forces in this case.
Collapse
Affiliation(s)
- Derek H H Chan
- Dainton Building, Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire, S3 7HF, UK.
| | - Saul J Hunter
- Dainton Building, Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire, S3 7HF, UK.
| | - Thomas J Neal
- Dainton Building, Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire, S3 7HF, UK.
| | - Christopher Lindsay
- Syngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire, RG42 6EY, UK.
| | - Philip Taylor
- Syngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire, RG42 6EY, UK.
| | - Steven P Armes
- Dainton Building, Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire, S3 7HF, UK.
| |
Collapse
|
11
|
Zhang Y, Gu P, Jiao L, He J, Yu L, Liu Z, Yang Y, Hu Y, Liu J, Wang D. Chinese yam polysaccharides PLGA-stabilized Pickering emulsion as an adjuvant system for PCV- 2 vaccine to enhance immune response. Int J Biol Macromol 2022; 219:1034-1046. [PMID: 35963357 DOI: 10.1016/j.ijbiomac.2022.08.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/25/2022] [Accepted: 08/07/2022] [Indexed: 11/05/2022]
Abstract
Chinese yam polysaccharides (CYP) exhibit superior adjuvant activity and modulate the immune response, but the low bioavailability limits their clinical application. Pickering emulsions have been proven as an efficient vaccine delivery system to enhance the immune response. Here, we used the Chinese yam polysaccharides PLGA-stabilized Pickering emulsion adjuvant system (CYP-PPAS) loaded with Porcine circovirus 2 as a vaccine and focused on investigating its adjuvant activity on humoral and cellular immunity in mice. The CYP-PPAS increased PCV-2 antigen loading efficiency and showed a high antigen uptake efficiency by macrophages in vitro. In vivo, CYP-PPAS significantly facilitated DCs maturation in draining lymph nodes than CYP or PPAS alone group. The CYP-PPAS also induced an increased proliferation index and a CD4+/CD8+ ratio. Meanwhile, in contrast to the CYP and PPAS groups, CYP-PPAS elicited a stronger anti-PCV-2 IgG and mixed Th1/Th2 immune response. Specifically, the CYP-PPAS group displayed the high expression of CD107a, FasL, and Granzyme B secretion to augment a strong cytotoxic lymphocyte response. Overall, the CYP-PPAS was a successful adjuvant system for promoting humoral and cellular immune responses, which opens up an avenue for the development of effective adjuvants against infectious diseases.
Collapse
Affiliation(s)
- Yue Zhang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Pengfei Gu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Lina Jiao
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jin He
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Lin Yu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zhenguang Liu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yang Yang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yuanliang Hu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jiaguo Liu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Deyun Wang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
12
|
Abstract
The manufacturing of stable emulsion is a very important challenge for the cosmetic industry, which has motivated intense research activity for replacing conventional molecular stabilizers with colloidal particles. These allow minimizing the hazards and risks associated with the use of conventional molecular stabilizers, providing enhanced stability to the obtained dispersions. Therefore, particle-stabilized emulsions (Pickering emulsions) present many advantages with respect to conventional ones, and hence, their commercialization may open new avenues for cosmetic formulators. This makes further efforts to optimize the fabrication procedures of Pickering emulsions, as well as the development of their applicability in the fabrication of different cosmetic formulations, necessary. This review tries to provide an updated perspective that can help the cosmetic industry in the exploitation of Pickering emulsions as a tool for designing new cosmetic products, especially creams for topical applications.
Collapse
|
13
|
Guzmán E, Abelenda-Núñez I, Maestro A, Ortega F, Santamaria A, Rubio RG. Particle-laden fluid/fluid interfaces: physico-chemical foundations. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:333001. [PMID: 34102618 DOI: 10.1088/1361-648x/ac0938] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/08/2021] [Indexed: 06/12/2023]
Abstract
Particle-laden fluid/fluid interfaces are ubiquitous in academia and industry, which has fostered extensive research efforts trying to disentangle the physico-chemical bases underlying the trapping of particles to fluid/fluid interfaces as well as the properties of the obtained layers. The understanding of such aspects is essential for exploiting the ability of particles on the stabilization of fluid/fluid interface for the fabrication of novel interface-dominated devices, ranging from traditional Pickering emulsions to more advanced reconfigurable devices. This review tries to provide a general perspective of the physico-chemical aspects associated with the stabilization of interfaces by colloidal particles, mainly chemical isotropic spherical colloids. Furthermore, some aspects related to the exploitation of particle-laden fluid/fluid interfaces on the stabilization of emulsions and foams will be also highlighted. It is expected that this review can be used for researchers and technologist as an initial approach to the study of particle-laden fluid layers.
Collapse
Affiliation(s)
- Eduardo Guzmán
- Departamento de Química Física, Universidad Complutense de Madrid, Madrid, Spain
- Instituto Pluridisciplinar, Universidad Complutense de Madrid, Madrid, Spain
| | - Irene Abelenda-Núñez
- Departamento de Química Física, Universidad Complutense de Madrid, Madrid, Spain
| | | | - Francisco Ortega
- Departamento de Química Física, Universidad Complutense de Madrid, Madrid, Spain
- Instituto Pluridisciplinar, Universidad Complutense de Madrid, Madrid, Spain
| | - Andreas Santamaria
- Instituto Pluridisciplinar, Universidad Complutense de Madrid, Madrid, Spain
- Institut Laue-Langevin, Grenoble, France
| | - Ramón G Rubio
- Departamento de Química Física, Universidad Complutense de Madrid, Madrid, Spain
- Instituto Pluridisciplinar, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
14
|
Miyazaki T, Nakagawa Y, Cabral H. Strategies for ligand-installed nanocarriers. HANDBOOK OF NANOTECHNOLOGY APPLICATIONS 2021:633-655. [DOI: 10.1016/b978-0-12-821506-7.00024-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
15
|
Plucinski A, Lyu Z, Schmidt BVKJ. Polysaccharide nanoparticles: from fabrication to applications. J Mater Chem B 2021; 9:7030-7062. [DOI: 10.1039/d1tb00628b] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The present review highlights the developments in polysaccharide nanoparticles with a particular focus on applications in biomedicine, cosmetics and food.
Collapse
Affiliation(s)
| | - Zan Lyu
- School of Chemistry, University of Glasgow, G12 8QQ Glasgow, UK
| | | |
Collapse
|
16
|
Li Z, Shi Y, Zhu A, Zhao Y, Wang H, Binks BP, Wang J. Light‐Responsive, Reversible Emulsification and Demulsification of Oil‐in‐Water Pickering Emulsions for Catalysis. Angew Chem Int Ed Engl 2020; 60:3928-3933. [DOI: 10.1002/anie.202010750] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Indexed: 11/09/2022]
Affiliation(s)
- Zhiyong Li
- Collaborative Innovation Center of Henan Province for, Green Manufacturing of Fine Chemicals Key Laboratory of Green Chemical Media and Reactions Ministry of Education School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 P. R. China
| | - Yunlei Shi
- Collaborative Innovation Center of Henan Province for, Green Manufacturing of Fine Chemicals Key Laboratory of Green Chemical Media and Reactions Ministry of Education School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 P. R. China
| | - Anlian Zhu
- Collaborative Innovation Center of Henan Province for, Green Manufacturing of Fine Chemicals Key Laboratory of Green Chemical Media and Reactions Ministry of Education School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 P. R. China
| | - Yuling Zhao
- Collaborative Innovation Center of Henan Province for, Green Manufacturing of Fine Chemicals Key Laboratory of Green Chemical Media and Reactions Ministry of Education School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 P. R. China
| | - Huiyong Wang
- Collaborative Innovation Center of Henan Province for, Green Manufacturing of Fine Chemicals Key Laboratory of Green Chemical Media and Reactions Ministry of Education School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 P. R. China
| | | | - Jianji Wang
- Collaborative Innovation Center of Henan Province for, Green Manufacturing of Fine Chemicals Key Laboratory of Green Chemical Media and Reactions Ministry of Education School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 P. R. China
| |
Collapse
|
17
|
Li Z, Shi Y, Zhu A, Zhao Y, Wang H, Binks BP, Wang J. Light‐Responsive, Reversible Emulsification and Demulsification of Oil‐in‐Water Pickering Emulsions for Catalysis. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010750] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Zhiyong Li
- Collaborative Innovation Center of Henan Province for, Green Manufacturing of Fine Chemicals Key Laboratory of Green Chemical Media and Reactions Ministry of Education School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 P. R. China
| | - Yunlei Shi
- Collaborative Innovation Center of Henan Province for, Green Manufacturing of Fine Chemicals Key Laboratory of Green Chemical Media and Reactions Ministry of Education School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 P. R. China
| | - Anlian Zhu
- Collaborative Innovation Center of Henan Province for, Green Manufacturing of Fine Chemicals Key Laboratory of Green Chemical Media and Reactions Ministry of Education School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 P. R. China
| | - Yuling Zhao
- Collaborative Innovation Center of Henan Province for, Green Manufacturing of Fine Chemicals Key Laboratory of Green Chemical Media and Reactions Ministry of Education School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 P. R. China
| | - Huiyong Wang
- Collaborative Innovation Center of Henan Province for, Green Manufacturing of Fine Chemicals Key Laboratory of Green Chemical Media and Reactions Ministry of Education School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 P. R. China
| | | | - Jianji Wang
- Collaborative Innovation Center of Henan Province for, Green Manufacturing of Fine Chemicals Key Laboratory of Green Chemical Media and Reactions Ministry of Education School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 P. R. China
| |
Collapse
|
18
|
El-Aooiti M, de Vries A, Rousseau D. Displacement of interfacially-bound monoglyceride crystals in water-in-oil emulsions by a non-ionic surfactant. J Colloid Interface Sci 2020; 580:630-637. [PMID: 32712469 DOI: 10.1016/j.jcis.2020.06.106] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 10/23/2022]
Abstract
HYPOTHESIS Micron and nano-scale particles are increasingly used to stabilize water-in-oil (W/O) emulsions. Though remarkably stable, the resulting emulsions can be broken by adding low molecular weight surfactants that modify the wettability of the interfacially-adsorbed particles. EXPERIMENTS W/O emulsions were prepared using lipophilic crystals of the monoglyceride glycerol monostearate (GMS), followed by addition of sorbitan monooleate (SMO) at concentrations below and above its critical micelle concentration (CMC). Systematic measurements of interfacial tension and three-phase contact angles, as well as characterization of emulsion sedimentation and microstructure, were used to assess GMS crystal wettability and emulsion destabilization. FINDINGS GMS crystals formed shells around the dispersed droplets, resulting in emulsions stable against breakdown under quiescent conditions. With SMO concentrations added below CMC, emulsion stability was not significantly affected. At SMO concentrations above CMC, the integrity of the crystalline shell was markedly affected. Notably, the GMS crystals transitioned from preferential oil-wet to water-wet behavior, eventually leading to their diffusion into the droplets. Therefore, in-situ modification of particle wettability at the oil-water interface was responsible for emulsion breakdown. Findings from this study may provide a pathway for the design of particle-stabilized W/O emulsions with controllable breakdown properties for applications such as tailored release of aqueous bioactive compounds.
Collapse
Affiliation(s)
- Malek El-Aooiti
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada
| | - Auke de Vries
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada
| | - Dérick Rousseau
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada.
| |
Collapse
|
19
|
Jiang H, Sheng Y, Ngai T. Pickering emulsions: Versatility of colloidal particles and recent applications. Curr Opin Colloid Interface Sci 2020; 49:1-15. [PMID: 32390759 PMCID: PMC7205700 DOI: 10.1016/j.cocis.2020.04.010] [Citation(s) in RCA: 217] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The versatility of colloidal particles endows the particle stabilized or Pickering emulsions with unique features and can potentially enable the fabrication of a wide variety of derived materials. We review the evolution and breakthroughs in the research on the use of colloidal particles for the stabilization of Pickering emulsions in recent years for the particle categories of inorganic particles, polymer-based particles, and food-grade particles. Moreover, based on the latest works, several emulsions stabilized by the featured particles and their derived functional materials, including enzyme immobilized emulsifiers for interfacial catalysis, 2D colloidal materials stabilized emulsions as templates for porous materials, and Pickering emulsions as adjuvant formulations, are also summarized. Finally, we point out the gaps in the current research on the applications of Pickering emulsions and suggest future directions for the design of particulate stabilizers and preparation methods for Pickering emulsions and their derived materials. We review the evolution and breakthroughs in the research on the use of colloidal particles for the stabilization of Pickering emulsions in recent years for the particle categories of inorganic particles, polymer-based particles, and food-grade particles. We discuss recent emulsions stabilized by the featured particles and their derived functional materials, including enzyme immobilized emulsifiers for interfacial catalysis, 2D colloidal materials stabilized emulsions as templates for porous materials, and Pickering emulsions as adjuvant formulations. We point out the gaps in the current research on the applications of Pickering emulsions and suggest future directions for the design of particulate stabilizers and preparation methods for Pickering emulsions and their derived materials.
Collapse
Affiliation(s)
- Hang Jiang
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong, China
| | - Yifeng Sheng
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong, China
| | - To Ngai
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong, China
| |
Collapse
|
20
|
Terescenco D, Hucher N, Picard C, Savary G. Sensory perception of textural properties of cosmetic Pickering emulsions. Int J Cosmet Sci 2020; 42:198-207. [DOI: 10.1111/ics.12604] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/25/2020] [Indexed: 01/14/2023]
Affiliation(s)
- D. Terescenco
- UNIHAVRE FR 3038 CNRS URCOM Normandie Univ. Le Havre 76600 France
| | - N. Hucher
- UNIHAVRE FR 3038 CNRS URCOM Normandie Univ. Le Havre 76600 France
| | - C. Picard
- UNIHAVRE FR 3038 CNRS URCOM Normandie Univ. Le Havre 76600 France
| | - G. Savary
- UNIHAVRE FR 3038 CNRS URCOM Normandie Univ. Le Havre 76600 France
| |
Collapse
|
21
|
Bago Rodriguez AM, Binks BP, Sekine T. Emulsions Stabilized with Polyelectrolyte Complexes Prepared from a Mixture of a Weak and a Strong Polyelectrolyte. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:6693-6707. [PMID: 31063381 DOI: 10.1021/acs.langmuir.9b00897] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The possibility of stabilizing emulsions with polyelectrolyte complexes (PEC) obtained from the interaction of two non-surface-active oppositely charged polyelectrolytes (PEL) is described. Poly(allylamine hydrochloride) (PAH) and poly(4-styrene sulfonate) sodium salt are selected as the weak cationic and the strong anionic polyelectrolyte, respectively. Aqueous polymer mixtures are investigated by light scattering to determine the size of the complexes and whether precipitation or complex coacervation occurs. The effects of PEL mixing ratio, pH, and PEL concentration are studied in detail. By increasing the pH, the transition precipitate-precipitate/coacervate-coacervate-polymer solution is observed. At low pH, both PEL are fully ionized and therefore precipitates (soft particles) arise as a result of strong electrostatic interactions. By increasing the pH, the degree of ionization of PAH decreases and weak electrostatic interactions ensue, supporting the formation of coacervate droplets. The most stable oil-in-water emulsions are prepared from aqueous mixtures around charge neutralization. Although emulsions can be prepared from coacervate droplet dispersions, their coalescence stability is worse than those stabilized by soft PEC particles. By increasing the PEL concentration, the average droplet diameter decreases and the fraction of cream in the emulsion increases for emulsions prepared with PEC particles, following the limited coalescence model. However, at high concentrations, emulsion stability is slightly worse probably due to extensive aggregation of the particles. Viscous high internal phase emulsions can be prepared at low pH in which oil droplets are deformed. Here, PEC particles are detected only at the oil-water interface. At lower oil content, excess particles form a network in the aqueous phase aiding emulsion stability to coalescence.
Collapse
Affiliation(s)
| | - Bernard P Binks
- Department of Chemistry and Biochemistry , University of Hull , Hull HU6 7RX , U.K
| | - Tomoko Sekine
- Shiseido Global Innovation Center , 1-2-11, Takashima , Nishi-ku, Yokohama 220-0011 , Japan
| |
Collapse
|
22
|
Modifying interfacial interparticle forces to alter microstructure and viscoelasticity of densely packed particle laden interfaces. J Colloid Interface Sci 2019; 536:30-41. [DOI: 10.1016/j.jcis.2018.10.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 10/10/2018] [Accepted: 10/11/2018] [Indexed: 11/20/2022]
|
23
|
Effects of interfacial composition on the stability of emulsion and encapsulated bioactives after thermal and high pressure processing. J FOOD ENG 2018. [DOI: 10.1016/j.jfoodeng.2018.02.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
24
|
Wood K, Szewczuk MR, Rousseau D, Neufeld RJ. Oseltamivir phosphate released from injectable Pickering emulsions over an extended term disables human pancreatic cancer cell survival. Oncotarget 2018; 9:12754-12768. [PMID: 29560107 PMCID: PMC5849171 DOI: 10.18632/oncotarget.24339] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 01/20/2018] [Indexed: 01/10/2023] Open
Abstract
Pickering emulsions are colloidal dispersions stabilized by particles that either migrate to, or are formed at, the oil-water interface during emulsification. Here, we fabricated and characterized Pickering water-in-oil emulsions where molten glycerol monostearate crystallized at the surface of micron-sized water droplets and formed protective solid shells. We tested this emulsion as a reservoir delivery platform for the sustained release of low molecular weight hydrophilic molecules including sodium chloride (NaCl) and sodium citrate as model compounds, and the therapeutic oseltamivir phosphate (OP), the delivery of which was the ultimate goal of this research. The objective was to achieve long-term (30-day) release of challenging to encapsulate actives and ultimately demonstrate the sustained release of OP for 20–30 days from an injectable formulation. OP was used because of its anticancer properties targeting mammalian neuraminidase 1 (Neu1) involved in multistage tumorigenesis. All actives including OP encapsulated in Pickering emulsions displayed a near linear release profile over 30 days. It was demonstrated that the release could be modulated by the addition of a second, competing surfactant sorbitan monooleate, Span 80, to the emulsion at levels above its critical micelle concentration. OP released from the emulsions significantly reduced cell viability in the human PANC-1 pancreatic cancer cell line for up to 30 days. The findings from this study indicate a simple, potentially injectable formulation and method that is easily upscaled resulting in a stable product with the potential to fully retain small hydrophilic molecules/drugs for sustained, near linear release over days, weeks, and potentially months.
Collapse
Affiliation(s)
- Kurt Wood
- Department of Chemical Engineering, Queen's University, Kingston, Ontario K7L3N6, Canada
| | - Myron R Szewczuk
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L3N6, Canada
| | - Dérick Rousseau
- Department of Chemistry and Biology, Ryers on University, Toronto, Ontario M5B 2K3, Canada
| | - Ronald J Neufeld
- Department of Chemical Engineering, Queen's University, Kingston, Ontario K7L3N6, Canada
| |
Collapse
|
25
|
Abbasi N, Navi M, Tsai SSH. Microfluidic Generation of Particle-Stabilized Water-in-Water Emulsions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:213-218. [PMID: 29231744 DOI: 10.1021/acs.langmuir.7b03245] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Herein, we present a microfluidic platform that generates particle-stabilized water-in-water emulsions. The water-in-water system that we use is based on an aqueous two-phase system of polyethylene glycol (PEG) and dextran (DEX). DEX droplets are formed passively, in the continuous phase of PEG and carboxylated particle suspension at a flow-focusing junction inside a microfluidic device. As DEX droplets travel downstream inside the microchannel, carboxylated particles that are in the continuous phase partition to the interface of the DEX droplets due to their affinity to the interface of PEG and DEX. As the DEX droplets become covered with carboxylated particles, they become stabilized against coalescence. We study the coverage and stability of the emulsions, while tuning the concentration and the size of the carboxylated particles, downstream inside the reservoir of the microfluidic device. These particle-stabilized water-in-water emulsions showcase good particle adsorption under shear, while being flowed through narrow microchannels. The intrinsic biocompatibility advantages of particle-stabilized water-in-water emulsions make them a good alternative to traditional particle-stabilized water-in-oil emulsions. To illustrate a biotechnological application of this platform, we show a proof-of-principle of cell encapsulation using this system, which with further development may be used for immunoisolation of cells for transplantation purposes.
Collapse
Affiliation(s)
- Niki Abbasi
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital , Toronto M5B 2K3, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST)-A Partnership between Ryerson University and St. Michael's Hospital , Toronto M5B 1W8, Canada
| | - Maryam Navi
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital , Toronto M5B 2K3, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST)-A Partnership between Ryerson University and St. Michael's Hospital , Toronto M5B 1W8, Canada
| | - Scott S H Tsai
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital , Toronto M5B 2K3, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST)-A Partnership between Ryerson University and St. Michael's Hospital , Toronto M5B 1W8, Canada
| |
Collapse
|
26
|
Pickering emulsions stabilized by biodegradable block copolymer micelles for controlled topical drug delivery. Int J Pharm 2017; 531:134-142. [PMID: 28802793 DOI: 10.1016/j.ijpharm.2017.08.065] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 07/24/2017] [Accepted: 08/07/2017] [Indexed: 01/08/2023]
Abstract
Surfactant-free biocompatible and biodegradable Pickering emulsions were investigated as vehicles for skin delivery of hydrophobic drugs. O/w emulsions of medium-chain triglyceride (MCT) oil droplets loaded with all-trans retinol as a model hydrophobic drug were stabilized by block copolymer nanoparticles: either poly(lactide)-block-poly(ethylene glycol) (PLA-b-PEG) or poly(caprolactone)-block-poly(ethylene glycol) (PCL-b-PEG). Those innovative emulsions were prepared using two different processes allowing drug loading either inside oil droplets or inside both oil droplets and non-adsorbed block copolymer nanoparticles. Skin absorption of retinol was investigated in vitro on pig skin biopsies using the Franz cell method. Supplementary experiments by confocal fluorescence microscopy allowed the visualization of skin absorption of the Nile Red dye on histological sections. Retinol and Nile Red absorption experiments showed the large accumulation of hydrophobic drugs in the stratum corneum for the Pickering emulsions compared to the surfactant-based emulsion and an oil solution. Loading drug inside both oil droplets and block copolymer nanoparticles enhanced again skin absorption of drugs, which was ascribed to the supplementary contribution of free block copolymer nanoparticles loaded with drug. Such effect allowed tuning drug delivery to skin over a wide range by means of a suitable selection of either the formulation or the drug loading process.
Collapse
|
27
|
Nanostructuring Biomaterials with Specific Activities towards Digestive Enzymes for Controlled Gastrointestinal Absorption of Lipophilic Bioactive Molecules. Adv Colloid Interface Sci 2016; 237:52-75. [PMID: 28314428 DOI: 10.1016/j.cis.2016.10.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 10/18/2016] [Accepted: 10/18/2016] [Indexed: 11/24/2022]
Abstract
This review describes the development of novel lipid-based biomaterials that modulate fat digestion for the enhanced uptake of encapsulated lipophilic bioactive compounds (e.g. drugs and vitamins). Specific focus is directed towards analysing how key material characteristics affect the biological function of digestive lipases and manipulate lipolytic digestion. The mechanism of lipase action is a complex, interfacial process, whereby hydrolysis can be controlled by the ability for lipase to access and adsorb to the lipid-in-water interface. However, significant conjecture exists within the literature regarding parameters that influence the activities of digestive lipases. Important findings from recent investigations that strategically examined the interplay between the interfacial composition of the lipid microenvironment and lipolysis kinetics in simulated biophysical environments are presented. The correlation between lipolysis and the rate of solubilisation and absorption of lipophilic compounds in the gastrointestinal tract (GIT) is detailed. Greater insights into the mechanism of lipase action have provided a new approach for designing colloidal carriers that orally deliver poorly soluble compounds, directly impacting the pharmaceutical and food industries.
Collapse
|
28
|
Wu J, Ma GH. Recent Studies of Pickering Emulsions: Particles Make the Difference. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:4633-48. [PMID: 27337222 DOI: 10.1002/smll.201600877] [Citation(s) in RCA: 454] [Impact Index Per Article: 50.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/13/2016] [Indexed: 05/20/2023]
Abstract
In recent years, emulsions stabilized by micro- or nanoparticles (known as Pickering emulsions) have attracted much attention. Micro- or nanoparticles, as the main components of the emulsion, play a key role in the preparation and application of Pickering emulsions. The existence of particles at the interface between the oil and aqueous phases affects not only the preparation, but also the properties of Pickering emulsions, affording superior stability, low toxicity, and stimuli-responsiveness compared to classical emulsions stabilized by surfactants. These advantages of Pickering emulsions make them attractive, especially in biomedicine. In this review, the effects of the characteristics of micro- and nanoparticles on the preparation and properties of Pickering emulsions are introduced. In particular, the preparation methods of Pickering emulsions, especially uniform-sized emulsions, are listed. Uniform Pickering emulsions are convenient for both mechanistic research and applications. Furthermore, some biomedical applications of Pickering emulsions are discussed and the problems hindering their clinical application are identified.
Collapse
Affiliation(s)
- Jie Wu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Guang-Hui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China.
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing, 211800, China.
| |
Collapse
|
29
|
Tang J, Quinlan PJ, Tam KC. Stimuli-responsive Pickering emulsions: recent advances and potential applications. SOFT MATTER 2015; 11:3512-29. [PMID: 25864383 DOI: 10.1039/c5sm00247h] [Citation(s) in RCA: 384] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Pickering emulsions possess many advantages over traditional surfactant stabilized emulsions. For example, Pickering emulsions impart better stability against coalescence and, in many cases, are biologically compatible and environmentally friendly. These characteristics open the door for their use in a variety of industries spanning petroleum, food, biomedicine, pharmaceuticals, and cosmetics. Depending on the application, rapid, but controlled stabilization and destabilization of an emulsion may be necessary. As a result, Pickering emulsions with stimuli-responsive properties have, in recent years, received a considerable amounts of attention. This paper provides a concise and comprehensive review of Pickering emulsion systems that possess the ability to respond to an array of external triggers, including pH, temperature, CO2 concentration, light intensity, ionic strength, and magnetic field. Potential applications for which stimuli-responsive Pickering emulsion systems would be of particular value, such as emulsion polymerization, enhanced oil recovery, catalyst recovery, and cosmetics, are discussed.
Collapse
Affiliation(s)
- Juntao Tang
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada.
| | | | | |
Collapse
|
30
|
Snoeyink C, Barman S, Christopher GF. Contact angle distribution of particles at fluid interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:891-897. [PMID: 25548951 DOI: 10.1021/la5040195] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Recent measurements have implied a distribution of interfacially adsorbed particles' contact angles; however, it has been impossible to measure statistically significant numbers for these contact angles noninvasively in situ. Using a new microscopy method that allows nanometer-scale resolution of particle's 3D positions on an interface, we have measured the contact angles for thousands of latex particles at an oil/water interface. Furthermore, these measurements are dynamic, allowing the observation of the particle contact angle with high temporal resolution, resulting in hundreds of thousands of individual contact angle measurements. The contact angle has been found to fit a normal distribution with a standard deviation of 19.3°, which is much larger than previously recorded. Furthermore, the technique used allows the effect of measurement error, constrained interfacial diffusion, and particle property variation on the contact angle distribution to be individually evaluated. Because of the ability to measure the contact angle noninvasively, the results provide previously unobtainable, unique data on the dynamics and distribution of the adsorbed particles' contact angle.
Collapse
Affiliation(s)
- Craig Snoeyink
- Department of Mechanical Engineering, Texas Tech University , Lubbock, Texas 79409-1035, United States
| | | | | |
Collapse
|
31
|
Barman S, Christopher GF. Simultaneous interfacial rheology and microstructure measurement of densely aggregated particle laden interfaces using a modified double wall ring interfacial rheometer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:9752-9760. [PMID: 25068732 DOI: 10.1021/la502329s] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The study of particle laden interfaces has increased significantly due to the increasing industrial use of particle stabilized foams and Pickering emulsions, whose bulk rheology and stability are highly dependent on particle laden interface's interfacial rheology, which is a function of interfacial microstructure. To understand the physical mechanisms that dictate interfacial rheology of particle laden interfaces requires correlating rheology to microstructure. To achieve this goal, a double wall ring interfacial rheometer has been modified to allow real time, simultaneous interfacial visualization and shear rheology measurements. The development of this tool is outlined, and its ability to provide novel and unique measurements is demonstrated on a sample system. This tool has been used to examine the role of microstructure on the steady shear rheology of densely packed, aggregated particle laden interfaces at three surface concentrations. Through examination of the rheology and analysis of interfacial microstructure response to shear, a transition from shear thinning due to aggregated cluster breakup to yielding at a slip plane within the interface has been identified. Interestingly, it is found that aggregated interfaces transition to yielding well before they reached a jammed state. Furthermore, these systems undergo significant shear induced order when densely packed. These results indicate that the mechanics of these interfaces are not simply jammed or unjammed and that the interfacial rheology relationship with microstructure can give us significant insight into understanding how to engineer particle laden interfaces in the future. By examining both rheology and microstructure, the mechanisms that dictate observed rheology are now understood and can be used to predict and control the rheology of the interface.
Collapse
Affiliation(s)
- Sourav Barman
- Department of Mechanical Engineering, Texas Tech University , Lubbock, Texas 79409-1021, United States
| | | |
Collapse
|
32
|
Whitby CP, Krebsz M. Coalescence in concentrated Pickering emulsions under shear. SOFT MATTER 2014; 10:4848-4854. [PMID: 24862445 DOI: 10.1039/c4sm00491d] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We have investigated the rheology of concentrated oil-in-water emulsions stabilised by silanised silica nanoparticles. The emulsions behave like highly elastic solids in response to small, uniform strains. They become unstable and begin to break down, however, on yielding. We show that the emulsion elasticity is correlated with the salt concentration in the water and hence the particle aggregation in emulsions at a given drop volume fraction. A supporting observation is that destabilisation is favoured by minimising the attractive interactions between the particles. Microscopic observations revealed that coalesced drops have anisotropic shapes and wrinkled surfaces, direct evidence of the interfacial particle layer acting like a mechanical barrier to bulk emulsion destabilisation.
Collapse
Affiliation(s)
- Catherine P Whitby
- Ian Wark Research Institute, University of South Australia, Mawson Lakes, SA 5095, Australia.
| | | |
Collapse
|
33
|
Chevalier Y, Bolzinger MA. Emulsions stabilized with solid nanoparticles: Pickering emulsions. Colloids Surf A Physicochem Eng Asp 2013. [DOI: 10.1016/j.colsurfa.2013.02.054] [Citation(s) in RCA: 849] [Impact Index Per Article: 70.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
34
|
Binks BP, Fletcher PDI, Johnson AJ, Elliott RP. How membrane permeation is affected by donor delivery solvent. Phys Chem Chem Phys 2012; 14:15525-38. [PMID: 23073464 DOI: 10.1039/c2cp42747h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We investigate theoretically and experimentally how the rate and extent of membrane permeation is affected by switching the donor delivery solvent from water to squalane for different permeants and membranes. In a model based on rate-limiting membrane diffusion, we derive explicit equations showing how the permeation extent and rate depend mainly on the membrane-donor and membrane-receiver partition coefficients of the permeant. Permeation results for systems containing all combinations of hydrophilic or hydrophobic donor solvents (aqueous solution or squalane), permeants (caffeine or testosterone) and polymer membranes (cellulose or polydimethylsiloxane) have been measured using a cell with stirred donor and re-circulating receiver compartments and continuous monitoring of the permeant concentration in the receiver phase. Relevant partition coefficients are also determined. Quantitative comparison of model and experimental results for the widely-differing permeation systems successfully enables the systematic elucidation of all possible donor solvent effects in membrane permeation. For the experimental conditions used here, most of the permeation systems are in agreement with the model, demonstrating that the model assumptions are valid. In these cases, the dominant donor solvent effects arise from changes in the relative affinities of the permeant for the donor and receiver solvents and the membrane and are quantitatively predicted using the separately measured partition coefficients. We also show how additional donor solvent effects can arise when switching the donor solvent causes one or more of the model assumptions to be invalid. These effects include a change in rate-limiting step, permeant solution non-ideality and others.
Collapse
Affiliation(s)
- Bernard P Binks
- Surfactant & Colloid Group, Department of Chemistry, University of Hull, Hull, HU6 7RX, UK
| | | | | | | |
Collapse
|
35
|
Zou J, Frost DS, Dai LL. Effects of gelator 12-hydroxystearic acid (12-HSA) on ionic liquid based Pickering emulsions. Colloids Surf A Physicochem Eng Asp 2012. [DOI: 10.1016/j.colsurfa.2012.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
36
|
Affiliation(s)
- Firas G. Hougeir
- General and Cosmetic Dermatology, Mohs Micrographic Surgery; Atlanta; Georgia
| | | |
Collapse
|
37
|
Binks BP, Fletcher PDI, Johnson AJ, Elliott RP. Membrane permeation of testosterone from either solutions, particle dispersions, or particle-stabilized emulsions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:2510-2522. [PMID: 22224415 DOI: 10.1021/la204755m] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We derive a unified model that accounts for the variation in extent and rate of membrane permeation by a permeating species with the type of donor compartment formulation (aqueous and oil solutions, particle dispersions, and oil-in-water and water-in-oil emulsions stabilized by particles) initially containing the permeant. The model is also applicable to either closed-loop or open-flow configurations of the receiver compartment of the permeation cell. Predictions of the model are compared with measured extents and rates of permeation of testosterone across an 80 μm thick polydimethylsiloxane (PDMS) membrane from donor compartments initially containing testosterone dissolved in either aqueous or isopropylmyristate (IPM) solutions, aqueous or IPM dispersions of silica nanoparticles or IPM-in-water or water-in-IPM emulsions stabilized by silica nanoparticles. Using a single set of input parameters, the model successfully accounts for the wide variations in permeation behavior observed for the different donor formulation types with either closed-loop or open flow configurations of the permeation cell receiver compartment.
Collapse
Affiliation(s)
- Bernard P Binks
- Surfactant & Colloid Group, Department of Chemistry, University of Hull, Hull HU6 7RX, UK
| | | | | | | |
Collapse
|