1
|
Anderson AM, O'Connor MS, Pipkin J, Malanga M, Sohajda T, Loftsson T, Szente L, García-Fandiño R, Piñeiro Á. A comprehensive nomenclature system for cyclodextrins. Carbohydr Polym 2025; 360:123600. [PMID: 40399013 DOI: 10.1016/j.carbpol.2025.123600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/06/2025] [Accepted: 04/09/2025] [Indexed: 05/23/2025]
Abstract
Modified cyclodextrins (CDs) are cyclic oligosaccharides with many applications in drug delivery, catalysis, and as active pharmaceutical ingredients. In general, they exist as distributions of structurally diverse molecules rather than single-isomer compounds. Their performance depends on the number of glucopyranose units (GPUs), and the type, number, and position of chemical substitutions in their hydroxyl groups. Effectively targeting individual species within these distributions is essential for optimizing CDs for specific applications. Computational techniques can generate large datasets to AI-driven structural optimization, but the absence of a standardized nomenclature system for modified CDs presents a major barrier to progress in this direction. This lack of consensus limits effective communication, data sharing, automation, and collaboration. To address this, a clear and extensible nomenclature for modified CDs is proposed. In this framework, GPUs are treated like amino-acid residues, with unsubstituted GPUs as reference building-blocks and substituted ones considered as mutations. This approach precisely defines substitution types and patterns, resolves cyclic permutation ambiguities, and offers versatility for both simple and complex modifications, including chiral center alterations and covalently linked CD oligomers. By introducing this standardized nomenclature, we aim to enhance molecular design, improve reproducibility, and streamline both experimental and computational research in the CD field.
Collapse
Affiliation(s)
| | | | - James Pipkin
- Ligand Pharmaceuticals Incorporated, 3911 Sorrento Valley Boulevard, San Diego, CA 92121, USA
| | - Milo Malanga
- CarboHyde, Budapest, Berlini u. 47-49, 1045, Hungary
| | - Tamas Sohajda
- CarboHyde, Budapest, Berlini u. 47-49, 1045, Hungary
| | - Thorsteinn Loftsson
- Faculty of Pharmaceutical Sciences, University of Iceland, Hofsvallagata 53, IS-107 Reykjavik, Iceland
| | - Lajos Szente
- CycloLab Cyclodextrin R&D Laboratory Ltd., Illatos u. 7., Budapest H-1097, Hungary
| | - Rebeca García-Fandiño
- Department of Organic Chemistry, Center for Research in Biological Chemistry and Molecular Materials, University of Santiago de Compostela, CIQUS, Spain.
| | - Ángel Piñeiro
- Department of Applied Physics, Faculty of Physics, University of Santiago de Compostela, Spain.
| |
Collapse
|
2
|
Qelliny MR, Mustafa WW, Fatease AA, Alamri AH, Alany R, Abdelkader H. Biofunctional Excipients: Their Emerging Role in Overcoming the Inherent Poor Biopharmaceutical Characteristics of Drugs. Pharmaceutics 2025; 17:598. [PMID: 40430890 DOI: 10.3390/pharmaceutics17050598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2025] [Revised: 04/26/2025] [Accepted: 04/30/2025] [Indexed: 05/29/2025] Open
Abstract
Background/Objectives: With advancements in biomaterial sciences, biofunctional excipients have emerged to focus on solving issues with the drugs' inherent biopharmaceutical characteristics such as poor solubility, permeability, in vivo dissolution, and effective targeting. These advanced excipients significantly impact drug solubility, dissolution rates, absorption rates, permeation rates, penetration ability, targeting ability, and pharmacokinetic profiles. Methods: A literature review of recently published articles was prepared. Data were collected using scientific search engines. This review provided a detailed discussion of various biofunctional excipients including smart polymers, targeted polymers, bioadhesive polymers, lipids, amino acids, cyclodextrins, and biosurfactants. Each category was discussed in detail concerning its biofunctional applications, the mechanisms underlying these biofunctions, and examples of their effects on drug performance. Results: The data obtained indicated that the rapid advances in the manufacturing of pharmaceutical excipients have resulted in the development of a diverse array of smart or intelligent excipients that play a crucial role in enhancing inherent poor biopharmaceutical characteristics. Conclusions: These advancements have also facilitated the development of various drug delivery systems, including immediate, controlled, sustained, and targeted drug release systems. Also, numerous nano-based delivery systems have emerged utilizing the newly produced excipients.
Collapse
Affiliation(s)
- Milad Reda Qelliny
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
- Department of Pharmaceutics, Faculty of Pharmacy, Minia National University, Minia 61768, Egypt
| | - Wesam W Mustafa
- Department of Pharmaceutics, College of Pharmacy, Al-Mustafa University, Baghdad 996X+JXC, Iraq
| | - Adel Al Fatease
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Ali H Alamri
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Raid Alany
- School of Pharmacy, Kingston University London, Kingston Upon Thames KT1 2EE, UK
| | - Hamdy Abdelkader
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| |
Collapse
|
3
|
Alotayeq A, Ghannay S, Alhagri IA, Ahmed I, Hammami B, E. A. E. Albadri A, Patel H, Messaoudi S, Kadri A, M. Al-Hazmy S, Aouadi K. Synthesis, optical properties, DNA, β-cyclodextrin interaction, hydrogen isotope sensor and computational study of new enantiopure isoxazolidine derivative (ISoXD). Heliyon 2024; 10:e26341. [PMID: 38404822 PMCID: PMC10884473 DOI: 10.1016/j.heliyon.2024.e26341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/12/2024] [Accepted: 02/12/2024] [Indexed: 02/27/2024] Open
Abstract
A novel isoxazolidine derivative (ISoXD) dye was successfully synthesized and comprehensively characterized. In this study, we conducted a thorough examination of its various properties, including optical characteristics, interactions with DNA and β-cyclodextrin (β-CD), molecular docking, molecular dynamic simulation, and density functional theory (DFT) calculations. Our investigation encompassed a systematic analysis of the absorption and emission spectra of ISoXD in diverse solvents. The observed variations in the spectroscopic data were attributed to the specific solvent's capacity to engage in hydrogen bonding interactions. Remarkably, the most pronounced intensities were observed in glycol, which can establish many hydrogen bonds with ISoXD. Furthermore, our study revealed a significant distinction in the fluorescence behavior of ISoXD when subjected to different solvents, particularly between CHCl3 and CDCl3. Moreover, we explored the fluorescence intensity of the ISoXD complex in the presence of various metals, both in ethanol and water. The ISoXD complex exhibited a substantial increase of fluorescence upon interaction with different metal ions. The utilization of DFT calculations allowed us to propose an intramolecular charge transfer (ICT) mechanism as a plausible explanation for this quenching phenomenon. The interaction of ISoXD with DNA and β-CD was studied using absorption spectra. The binding constant (K) and the standard Gibbs free energy change (ΔGo) for the interaction between DNA and β-CD with ISoXD were determined. In docking study, ISoXD exhibited significant docking scores (-6.511) and MM-GBSA binding free energies (-66.27 kcal/mol) within the PARP-1 binding cavity. Its binding pattern closely resembles to the co-crystal ligand veliparib, and during a 100ns MD simulation, ISoXD displayed strong stability and formed robust hydrogen bonds with key amino acids. These findings suggest ISoXD's potential as a PARP-1 inhibitor for further investigation in therapeutic development.
Collapse
Affiliation(s)
- Afnan Alotayeq
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia
| | - Siwar Ghannay
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia
| | - Ibrahim A. Alhagri
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia
- Department of Chemistry, Faculty of Sciences, Ibb University, Ibb, Yemen
| | - Iqrar Ahmed
- Department of Pharmaceutical Chemistry, Prof. Ravindra Nikam College of Pharmacy, Gondur, Dhule, 424002, India
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, 425405, Maharashtra, India
| | - Bechir Hammami
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia
| | - Abuzar E. A. E. Albadri
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia
| | - Harun Patel
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, 425405, Maharashtra, India
| | - Sabri Messaoudi
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia
- Faculty of Sciences of Bizerte, Carthage University, Jarzouna, Bizerte 7021, Tunisia
| | - Adel Kadri
- Faculty of Science of Sfax, Department of Chemistry, University of Sfax, B.P. 1171, 3000 Sfax, Tunisia
- Department of Chemistry, Faculty of Science and Arts of Baljurashi, Al- Baha University, Saudi Arabia
| | - Sadeq M. Al-Hazmy
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia
| | - Kaiss Aouadi
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia
- Department of Chemistry, Laboratory of Heterocyclic Chemistry Natural Product and Reactivity/CHPNR, Faculty of Science of Monastir, University of Monastir, Avenue of the Environment, Monastir, 5019, Tunisia
| |
Collapse
|
4
|
Bognanni N, Viale M, La Piana L, Strano S, Gangemi R, Lombardo C, Cambria MT, Vecchio G. Hyaluronan-Cyclodextrin Conjugates as Doxorubicin Delivery Systems. Pharmaceutics 2023; 15:374. [PMID: 36839696 PMCID: PMC9963997 DOI: 10.3390/pharmaceutics15020374] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
In the last years, nanoparticles based on cyclodextrins have been widely investigated for the delivery of anticancer drugs. In this work, we synthesized nanoparticles with a hyaluronic acid backbone functionalized with cyclodextrins under green conditions. We functionalized hyaluronic acid with two different molecular weights (about 11 kDa and 45 kDa) to compare their behavior as doxorubicin delivery systems. We found that the new hyaluronan-cyclodextrin conjugates increased the water solubility of doxorubicin. Moreover, we tested the antiproliferative activity of doxorubicin in the presence of the new cyclodextrin polymers in SK-N-SH and SK-N-SH-PMA (over-expressing CD44 receptor) cancer cells. We found that hyaluronan-cyclodextrin conjugates improved the uptake and antiproliferative activity of doxorubicin in the SK-N-SH-PMA compared to the SK-N-SH cell line at the ratio 8/1 doxorubicin/polymer. Notably, the system based on hyaluronan (45 kDa) was more effective as a drug carrier and significantly reduced the IC50 value of doxorubicin by about 56%. We also found that hyaluronic acid polymers determined an improved antiproliferative activity of doxorubicin (IC50 values are on average reduced by about 70% of free DOXO) in both cell lines at the ratio 16/1 doxorubicin/polymer.
Collapse
Affiliation(s)
- Noemi Bognanni
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Maurizio Viale
- UOC Bioterapie, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132 Genova, Italy
| | - Luana La Piana
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Simone Strano
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Rosaria Gangemi
- UOC Bioterapie, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132 Genova, Italy
| | - Cinzia Lombardo
- Dipartimento di Scienze Biomediche e Biotecnologiche, Sezione di Biochimica Medica, Università degli Studi di Catania, Via S. Sofia 97, 95125 Catania, Italy
| | - Maria Teresa Cambria
- Dipartimento di Scienze Biomediche e Biotecnologiche, Sezione di Biochimica Medica, Università degli Studi di Catania, Via S. Sofia 97, 95125 Catania, Italy
| | - Graziella Vecchio
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale A. Doria 6, 95125 Catania, Italy
| |
Collapse
|
5
|
Pancani E, Veclani D, Agnes M, Mazza A, Venturini A, Malanga M, Manet I. Three-in-one: exploration of co-encapsulation of cabazitaxel, bicalutamide and chlorin e6 in new mixed cyclodextrin-crosslinked polymers. RSC Adv 2023; 13:10923-10939. [PMID: 37033421 PMCID: PMC10077339 DOI: 10.1039/d3ra01782f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 03/27/2023] [Indexed: 04/09/2023] Open
Abstract
Three-in-one: a single bCyD polymer easily prepared in water is used to co-encapsulate cabazitaxel and bicalutamide with chlorin e6 affording a nanoplatform to implement multimodal cancer therapy.
Collapse
Affiliation(s)
- Elisabetta Pancani
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via P. Gobetti 101, I-40129 Bologna, Italy
| | - Daniele Veclani
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via P. Gobetti 101, I-40129 Bologna, Italy
| | - Marco Agnes
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via P. Gobetti 101, I-40129 Bologna, Italy
| | - Arianna Mazza
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via P. Gobetti 101, I-40129 Bologna, Italy
| | - Alessandro Venturini
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via P. Gobetti 101, I-40129 Bologna, Italy
| | - Milo Malanga
- CycloLab, Cyclodextrin R&D Ltd., Budapest, Hungary
| | - Ilse Manet
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via P. Gobetti 101, I-40129 Bologna, Italy
| |
Collapse
|
6
|
Ferreira L, Campos J, Veiga F, Cardoso C, Cláudia Paiva-Santos A. Cyclodextrin-based delivery systems in parenteral formulations: a critical update review. Eur J Pharm Biopharm 2022; 178:35-52. [PMID: 35868490 DOI: 10.1016/j.ejpb.2022.07.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/28/2022] [Accepted: 07/17/2022] [Indexed: 11/04/2022]
Abstract
Parenteral formulations are indispensable in clinical practice and often are the only option to administer drugs that cannot be administrated through other routes, such as proteins and certain anticancer drugs - which are indispensable to treat some of the most prevailing chronic diseases worldwide (like diabetes and cancer). Additionally, parenteral formulations play a relevant role in emergency care since they are the only ones that provide an immediate action of the drug after its administration. However, the development of parenteral formulations is a complex task owing to the specific quality and safety requirements set for these preparations and the intrinsic properties of the drugs. Amongst all the strategies that can be useful in the development of parenteral formulations, the formation of water-soluble host-guest inclusion complexes with cyclodextrins (CDs) has proven to be one of the most advantageous. CDs are multifunctional pharmaceutical excipients able to form water-soluble host-guest inclusion complexes with a wide variety of molecules, particularly drugs, and thus improve their apparent water-solubility, chemical stability, and bioavailability, to make them suitable for parenteral administration. Besides, CDs can be employed as building blocks of more complex injectable drug delivery systems with enhanced characteristics, such as nanoparticles and supramolecular hydrogels, that has been found particularly beneficial for the delivery of anticancer drugs. However, only a few CDs are considered safe when parenterally administered, and some of these types are already approved to be used in parenteral dosage forms. Therefore, the application of CDs in the development of parenteral formulations has been a more common practice in the last few years, due to their significant worldwide acceptance by the health authorities, promoting the development of safer and more efficient injectable drug delivery systems.
Collapse
Affiliation(s)
- Laura Ferreira
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| | - Joana Campos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| | - Francisco Veiga
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| | - Catarina Cardoso
- Laboratórios Basi, Parque Industrial Manuel Lourenço Ferreira, lote 15, 3450-232 Mortágua, Portugal
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
7
|
Experimental and theoretical studies of pegylated-β-cyclodextrin: A step forward to understand its tunable self-aggregation abilities. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.102975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
8
|
Matencio A, Rubin Pedrazzo A, Difalco A, Navarro-Orcajada S, Khazeai Monfared Y, Conesa I, Rezayat A, López-Nicolás JM, Trotta F. Advances and Classification of Cyclodextrin-Based Polymers for Food-Related Issues. Polymers (Basel) 2021; 13:4226. [PMID: 34883729 PMCID: PMC8659987 DOI: 10.3390/polym13234226] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/24/2021] [Accepted: 11/30/2021] [Indexed: 12/11/2022] Open
Abstract
Cyclodextrins (CDs) are a good alternative to reduce or enhance different biomolecule characteristics and have demonstrated great results in food science. However, CDs present intrinsic limitations that can be solved by derivative synthesis. This review represents a survey of the state of the art of CD-based materials and their uses in food science. A deep review of the structure is carried out and different groups for ordination are suggested. After that, different applications such as cholesterol complexation or its use as sensors are reviewed. The derivatives show novel and promising activities for the industry. A critical perspective of the materials suggests that they might not present toxicity, although more studies are required. These points suggest that the research in this field will be increased in the following years.
Collapse
Affiliation(s)
- Adrián Matencio
- Department of Chemistry, University of Turin, Via P. Giuria 7, 10125 Torino, Italy; (A.R.P.); (A.D.); (Y.K.M.); (A.R.)
| | - Alberto Rubin Pedrazzo
- Department of Chemistry, University of Turin, Via P. Giuria 7, 10125 Torino, Italy; (A.R.P.); (A.D.); (Y.K.M.); (A.R.)
| | - Alessandro Difalco
- Department of Chemistry, University of Turin, Via P. Giuria 7, 10125 Torino, Italy; (A.R.P.); (A.D.); (Y.K.M.); (A.R.)
| | - Silvia Navarro-Orcajada
- Department of Biochemistry and Molecular Biology A, Biology Teaching Unit, Facultad de Veterinaria, Regional Campus of International Excellence “Campus Mare Nostrum”, Universidad de Murcia, 30100 Murcia, Spain; (S.N.-O.); (I.C.); (J.M.L.-N.)
| | - Yousef Khazeai Monfared
- Department of Chemistry, University of Turin, Via P. Giuria 7, 10125 Torino, Italy; (A.R.P.); (A.D.); (Y.K.M.); (A.R.)
| | - Irene Conesa
- Department of Biochemistry and Molecular Biology A, Biology Teaching Unit, Facultad de Veterinaria, Regional Campus of International Excellence “Campus Mare Nostrum”, Universidad de Murcia, 30100 Murcia, Spain; (S.N.-O.); (I.C.); (J.M.L.-N.)
| | - Azam Rezayat
- Department of Chemistry, University of Turin, Via P. Giuria 7, 10125 Torino, Italy; (A.R.P.); (A.D.); (Y.K.M.); (A.R.)
- Department of Chemistry, Faculty of Science, Lorestan University, Khorramabad 6813833946, Iran
| | - José Manuel López-Nicolás
- Department of Biochemistry and Molecular Biology A, Biology Teaching Unit, Facultad de Veterinaria, Regional Campus of International Excellence “Campus Mare Nostrum”, Universidad de Murcia, 30100 Murcia, Spain; (S.N.-O.); (I.C.); (J.M.L.-N.)
| | - Francesco Trotta
- Department of Chemistry, University of Turin, Via P. Giuria 7, 10125 Torino, Italy; (A.R.P.); (A.D.); (Y.K.M.); (A.R.)
| |
Collapse
|
9
|
Piñeiro Á, Pipkin J, Antle V, Garcia-Fandino R. Aggregation versus inclusion complexes to solubilize drugs with cyclodextrins. A case study using sulphobutylether-β-cyclodextrins and remdesivir. J Mol Liq 2021; 343:117588. [PMID: 34548723 PMCID: PMC8447550 DOI: 10.1016/j.molliq.2021.117588] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/11/2021] [Accepted: 09/14/2021] [Indexed: 11/18/2022]
Abstract
The formation of small hybrid aggregates between excipient and drug molecules is one of the mechanisms that contributes to the solubilization of active principles in pharmaceutical formulations. The characterization of the formation, governing interactions and structure of such entities is not trivial since they are highly flexible and dynamic, quickly exchanging molecules from one to another. In the case of cyclodextrins, this mechanism and the formation of inclusion complexes synergistically cooperate to favour the bioavailability of drugs. In a previous study we reported a detailed characterization of the possible formation of inclusion complexes with 1:1 stoichiometry between remdesivir, the only antiviral medication currently approved by the United States Food and Drug Administration for treating COVID-19, and sulphobutylether-β-cyclodextrins. Here we extend our study to assess the role of the spontaneous aggregation in the solubilization of the same drug, by molecular dynamics simulations at different relative concentrations of both compounds. The number of sulphobutylether substitutions in the cyclodextrin structure and two different protonation states of the remdesivir molecule are considered. We aim to shed light in the solubilization mechanism of sulphobutylether-β-cyclodextrins, broadly used as an excipient in many pharmaceutical formulations, in particular in the case of remdesivir as an active compound.
Collapse
Affiliation(s)
- Ángel Piñeiro
- Departamento de Física de Aplicada, Facultade de Física, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - James Pipkin
- Ligand Pharmaceuticals Incorporated, 3911 Sorrento Valley Boulevard, San Diego, CA, USA
| | - Vince Antle
- Ligand Pharmaceuticals Incorporated, 3911 Sorrento Valley Boulevard, San Diego, CA, USA
| | - Rebeca Garcia-Fandino
- Departamento de Química Orgánica, Center for Research in Biological Chemistry and Molecular Materials, Universidade de Santiago de Compostela, Campus Vida s/n, E-15782 Santiago de Compostela, Spain
| |
Collapse
|
10
|
Cordaro A, Zagami R, Malanga M, Venkatesan JK, Alvarez-Lorenzo C, Cucchiarini M, Piperno A, Mazzaglia A. Cyclodextrin Cationic Polymer-Based Nanoassemblies to Manage Inflammation by Intra-Articular Delivery Strategies. NANOMATERIALS 2020; 10:nano10091712. [PMID: 32872542 PMCID: PMC7558260 DOI: 10.3390/nano10091712] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 12/31/2022]
Abstract
Injectable nanobioplatforms capable of locally fighting the inflammation in osteoarticular diseases, by reducing the number of administrations and prolonging the therapeutic effect is highly challenging. β-Cyclodextrin cationic polymers are promising cartilage-penetrating candidates by intra-articular injection due to the high biocompatibility and ability to entrap multiple therapeutic and diagnostic agents, thus monitoring and mitigating inflammation. In this study, nanoassemblies based on poly-β-amino-cyclodextrin (PolyCD) loaded with the non-steroidal anti-inflammatory drug diclofenac (DCF) and linked by supramolecular interactions with a fluorescent probe (adamantanyl-Rhodamine conjugate, Ada-Rhod) were developed to manage inflammation in osteoarticular diseases. PolyCD@Ada-Rhod/DCF supramolecular nanoassemblies were characterized by complementary spectroscopic techniques including UV-Vis, steady-state and time-resolved fluorescence, DLS and ζ-potential measurement. Stability and DCF release kinetics were investigated in medium mimicking the physiological conditions to ensure control over time and efficacy. Biological experiments evidenced the efficient cellular internalization of PolyCD@Ada-Rhod/DCF (within two hours) without significant cytotoxicity in primary human bone marrow-derived mesenchymal stromal cells (hMSCs). Finally, polyCD@Ada-Rhod/DCF significantly suppressed IL-1β production in hMSCs, revealing the anti-inflammatory properties of these nanoassemblies. With these premises, this study might open novel routes to exploit original CD-based nanobiomaterials for the treatment of osteoarticular diseases.
Collapse
Affiliation(s)
- Annalaura Cordaro
- CNR-ISMN, Istituto per lo Studio dei Materiali Nanostrutturati, V. le F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.C.); (R.Z.)
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, V. le F. Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Roberto Zagami
- CNR-ISMN, Istituto per lo Studio dei Materiali Nanostrutturati, V. le F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.C.); (R.Z.)
| | - Milo Malanga
- CycloLab, Illatos út 7, H-1097 Budapest, Hungary;
| | - Jagadeesh Kumar Venkatesan
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421 Homburg/Saar, Germany; (J.K.V.); (M.C.)
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+DFarma (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15872 Santiago de Compostela, Spain;
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421 Homburg/Saar, Germany; (J.K.V.); (M.C.)
| | - Anna Piperno
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, V. le F. Stagno d’Alcontres 31, 98166 Messina, Italy
- Correspondence: (A.P.); (A.M.)
| | - Antonino Mazzaglia
- CNR-ISMN, Istituto per lo Studio dei Materiali Nanostrutturati, V. le F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.C.); (R.Z.)
- Correspondence: (A.P.); (A.M.)
| |
Collapse
|
11
|
Chakraborty S, Ghosh P, Basu B, Mandal A. Inclusion complex of β-cyclodextrin with tetrabutylammonium bromide: Synthesis, characterization and interaction with calf thymus DNA. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111525] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
12
|
Crini G, Fourmentin S, Fenyvesi É, Torri G, Fourmentin M, Morin-Crini N. Fundamentals and Applications of Cyclodextrins. ENVIRONMENTAL CHEMISTRY FOR A SUSTAINABLE WORLD 2018. [DOI: 10.1007/978-3-319-76159-6_1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
13
|
Cyclodextrin polymers as nanocarriers for sorafenib. Invest New Drugs 2017; 36:370-379. [PMID: 29116478 DOI: 10.1007/s10637-017-0538-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 10/31/2017] [Indexed: 01/15/2023]
Abstract
Polymeric nanoparticles based on cyclodextrins are currently undergoing clinical trials as new promising nanotherapeutics. In light of this interest, we investigated cyclodextrin cross-linked polymers with different lengths as carriers for the poorly water-soluble drug sorafenib. Both polymers significantly enhanced sorafenib solubility, with shorter polymers showing the most effective solubilizing effect. Inclusion complexes between sorafenib and the investigated polymers exhibited an antiproliferative effect in tumor cells similar to that of free sorafenib. Polymer/Sorafenib complexes also showed lower in vivo tissue toxicity than with free sorafenib in all organs. Our results suggest that the inclusion of sorafenib in polymers represents a successful strategy for a new formulation of this drug.
Collapse
|
14
|
Adeoye O, Cabral-Marques H. Cyclodextrin nanosystems in oral drug delivery: A mini review. Int J Pharm 2017; 531:521-531. [DOI: 10.1016/j.ijpharm.2017.04.050] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 04/19/2017] [Accepted: 04/21/2017] [Indexed: 02/05/2023]
|
15
|
Oliveri V, Bellia F, Viale M, Maric I, Vecchio G. Linear polymers of β and γ cyclodextrins with a polyglutamic acid backbone as carriers for doxorubicin. Carbohydr Polym 2017; 177:355-360. [PMID: 28962779 DOI: 10.1016/j.carbpol.2017.08.103] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/03/2017] [Accepted: 08/20/2017] [Indexed: 11/25/2022]
Abstract
Cyclodextrins have been used to encapsulate drugs improving their stability and efficiently regulating their release. Polymeric nanoparticles containing cyclodextrins are currently undergoing clinical trials as nanotherapeutics. In this context, we have synthesized new linear polymers based on polyglutamic acid with pendant β- or γ-cyclodextrins, using a high yield reaction route. The new polymers with an average number of about 17 cyclodextrin cavities were characterized (NMR, MALDI-MS, DLS) and tested as carriers of doxorubicin in human tumor cells. They can include doxorubicin, and the inclusion complexes show antiproliferative activity in human tumor cells.
Collapse
Affiliation(s)
- Valentina Oliveri
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Francesco Bellia
- Istituto di Biostrutture e Bioimmagini, CNR, Via P. Gaifami 18, 95126 Catania, Italy
| | - Maurizio Viale
- Ospedale Policlinico San Martino, U.O.C. Bioterapie, L.go R. Benzi 10, 16132 Genova, Italy
| | - Irena Maric
- Ospedale Policlinico San Martino, U.O.C. Bioterapie, L.go R. Benzi 10, 16132 Genova, Italy
| | - Graziella Vecchio
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale A. Doria 6, 95125 Catania, Italy.
| |
Collapse
|
16
|
Electrospun Fibers of Cyclodextrins and Poly(cyclodextrins). Molecules 2017; 22:molecules22020230. [PMID: 28165381 PMCID: PMC6155744 DOI: 10.3390/molecules22020230] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 01/21/2017] [Accepted: 01/30/2017] [Indexed: 11/28/2022] Open
Abstract
Cyclodextrins (CDs) can endow electrospun fibers with outstanding performance characteristics that rely on their ability to form inclusion complexes. The inclusion complexes can be blended with electrospinnable polymers or used themselves as main components of electrospun nanofibers. In general, the presence of CDs promotes drug release in aqueous media, but they may also play other roles such as protection of the drug against adverse agents during and after electrospinning, and retention of volatile fragrances or therapeutic agents to be slowly released to the environment. Moreover, fibers prepared with empty CDs appear particularly suitable for affinity separation. The interest for CD-containing nanofibers is exponentially increasing as the scope of applications is widening. The aim of this review is to provide an overview of the state-of-the-art on CD-containing electrospun mats. The information has been classified into three main sections: (i) fibers of mixtures of CDs and polymers, including polypseudorotaxanes and post-functionalization; (ii) fibers of polymer-free CDs; and (iii) fibers of CD-based polymers (namely, polycyclodextrins). Processing conditions and applications are analyzed, including possibilities of development of stimuli-responsive fibers.
Collapse
|
17
|
Callari M, Thomas DS, Stenzel MH. The dual-role of Pt(iv) complexes as active drug and crosslinker for micelles based on β-cyclodextrin grafted polymer. J Mater Chem B 2016; 4:2114-2123. [DOI: 10.1039/c5tb02429c] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Amphiphilic block copolymer based on poly(ethylene glycol) methyl ether methacrylate (POEGMEMA) and a block with pendant cyclodextrin units were self-assembled into micelles in the presence of the hydrophobic bile acid-based Pt(IV) drug, which also acted as crosslinker.
Collapse
Affiliation(s)
- Manuela Callari
- Centre for Advanced Macromolecular Design
- School of Chemistry
- University of New South Wales
- Sydney
- Australia
| | - Donald S. Thomas
- Mark Wainwright Analytical Centre
- University of New South Wales
- Sydney
- Australia
| | - Martina H. Stenzel
- Centre for Advanced Macromolecular Design
- School of Chemistry
- University of New South Wales
- Sydney
- Australia
| |
Collapse
|
18
|
Fülöp Z, Balogh A, Saokham P, Jansook P, Loftsson T. Formation and stability assessment of self-assembled nanoparticles from large Mw chitosan and sulfobutylether-β-cyclodextrin. J Drug Deliv Sci Technol 2015. [DOI: 10.1016/j.jddst.2015.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Simões SMN, Rey-Rico A, Concheiro A, Alvarez-Lorenzo C. Supramolecular cyclodextrin-based drug nanocarriers. Chem Commun (Camb) 2015; 51:6275-6289. [PMID: 25679097 DOI: 10.1039/c4cc10388b] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Supramolecular systems formed by the binding of several cyclodextrins (CDs) to polymers or lipids, either via non-covalent or covalent links, open a wide range of possibilities for the delivery of active substances. CDs can perform as multifunctionalizable cores to which very diverse (macro)molecules and drugs can be conjugated. Grafting with amphiphilic molecules can lead to nanoassemblies exhibiting a variety of architectures. CDs can also polymerize with other CDs or can be used to functionalize preexisting polymers to form polymers/networks with enhanced capability to form inclusion complexes. Alternatively, CDs can be exploited as transient cross-linkers to form poly(pseudo)rotaxane-based networks or zipper-like assemblies. Combination of mutifunctionality and complexation ability of CDs has been shown to be useful to develop depot-like formulations and colloidal nanocarriers with improved performances regarding easiness of administration, protection of the encapsulated substances, control of the delivery rate, and cell interactions. The aim of this review is to provide an overall view of the diversity of designs of CD-based supramolecular nanosystems with a special focus on the advances materialized in the last five years, including clinical trials.
Collapse
|
20
|
Liu P, Sun S, Guo X, Yang X, Huang J, Wang K, Wang Q, Liu J, He L. Competitive host-guest interaction between β-cyclodextrin polymer and pyrene-labeled probes for fluorescence analyses. Anal Chem 2015; 87:2665-71. [PMID: 25622804 DOI: 10.1021/ac503301q] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We developed a novel homogeneous fluorescence analysis based on a novel competitive host-guest interaction (CHGI) mechanism between β-cyclodextrin polymer (polyβ CD) and pyrene-labeled probe for biochemical assay. Pyrene labeling with oligonucleotide strands can be recruited and reside in lipophilic cavities of polyβ CD. This altered lipophilic microenvironment provides favored polarity for enhanced quantum efficiencies and extraordinarily increases the luminescence intensity of pyrene. However, with addition of complementary DNA, the pyrene-labeled probe formed double-strand DNA to hinder pyrene from entering the cavities of polyβ CD. The release of pyrene from polyβ CD, which are followed by fluorescence extinguishing, will provide the clear signal turn-off in the presence of target DNA. We also introduced Exodeoxyribonuclease I (Exo I) and Exodeoxyribonuclease III (Exo III) to improve the sensitivity of this system, and the following product of cleavage reaction, pyrene-nucleotide, could more easily host-guest interact with polyβ CD and emit stronger fluorescence than pyrene-labeled probe. In addition, the successful detection of adenosine is also demonstrated by using the similar sensing scheme. Although this scheme might be easily interfered by some biomolecules in the real test sample, it holds promising potential for detecting a broad range of other types of aptamer-binding chemicals and biomolecules.
Collapse
Affiliation(s)
- Pei Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University , Changsha, Hunan 410082, China
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Fülöp Z, Saokham P, Loftsson T. Sulfobutylether-β-cyclodextrin/chitosan nano- and microparticles and their physicochemical characteristics. Int J Pharm 2014; 472:282-7. [DOI: 10.1016/j.ijpharm.2014.06.039] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 06/20/2014] [Accepted: 06/21/2014] [Indexed: 12/18/2022]
|
22
|
Buranaboripan W, Lang W, Motomura E, Sakairi N. Preparation and characterization of polymeric host molecules, β-cyclodextrin linked chitosan derivatives having different linkers. Int J Biol Macromol 2014; 69:27-34. [DOI: 10.1016/j.ijbiomac.2014.05.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 04/25/2014] [Accepted: 05/04/2014] [Indexed: 11/28/2022]
|
23
|
Dextran-based cyclodextrin polymers: Their solubilizing effect and self-association. Carbohydr Polym 2013; 97:635-42. [DOI: 10.1016/j.carbpol.2013.05.053] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Revised: 05/17/2013] [Accepted: 05/20/2013] [Indexed: 11/19/2022]
|
24
|
Fülöp Z, Gref R, Loftsson T. A permeation method for detection of self-aggregation of doxorubicin in aqueous environment. Int J Pharm 2013; 454:559-61. [PMID: 23850794 DOI: 10.1016/j.ijpharm.2013.06.058] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 06/14/2013] [Accepted: 06/17/2013] [Indexed: 10/26/2022]
Abstract
For pharmaceutical scientists, it is important to know if dissolved drug molecules are present only as monomers or in the form of aggregates in a test solution or formulation. Amphiphilic or hydrophobic drugs frequently self-associate to form dimers, trimers or higher order aggregates. Doxorubicin aggregation was examined by a previously developed permeation technique to detect oligosaccharide aggregation in aqueous solutions. At very low doxorubicin concentrations dimers and trimers have been observed, but in aqueous 0.5mg/ml doxorubicin solutions aggregates containing about 40 molecules were observed. The permeation studies were supported by TEM studies. The results indicate that neutral doxorubicin molecules aggregate more readily than the protonated ones. Doxorubicin aggregation is a stepwise process resulting in formation of aggregates of variable sizes are enhanced aggregation with increasing doxorubicin concentration.
Collapse
Affiliation(s)
- Zoltán Fülöp
- Faculty of Pharmaceutical Sciences, University of Iceland, Hofsvallagata 53, 107 Reykjavík, Iceland.
| | | | | |
Collapse
|