1
|
Dong H, Wang S, Fu C, Sun Y, Wei T, Ren D, Wang Q. Sodium alginate and chitosan co-modified fucoxanthin liposomes: preparation, bioaccessibility and antioxidant activity. J Microencapsul 2023; 40:649-662. [PMID: 37867421 DOI: 10.1080/02652048.2023.2274057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 10/17/2023] [Indexed: 10/24/2023]
Abstract
To improve the stability of fucoxanthin, fucoxanthin liposomes (L) were prepared by the thin-film ultrasound method, and fucoxanthin liposomes were modified with sodium alginate and chitosan by an electrostatic deposition method. The release characteristics of fucoxanthin in different types of liposomes with in vitro gastrointestinal simulation were studied. Under the optimum conditions, the results showed that the encapsulation efficiency of prepared liposomes could reach 88.56 ± 1.40% (m/m), with an average particle size of 295.27 ± 7.28 nm, a Zeta potential of -21.53 ± 2.00 mV, a polydispersity index (PDI) of 0.323 ± 0.007 and a loading capacity of 33.3 ± 0.03% (m/m). Compared with L and chitosan modified fucoxanthin liposomes (CH), sodium alginate and chitosan modified fucoxanthin liposomes (SA-CH) exhibited higher storage stability, in vitro bioaccessibility and antioxidant activity after gastrointestinal digestion. Sodium alginate and chitosan co-modified liposomes can be developed as formulations for encapsulation and delivery of functional ingredients, providing a theoretical basis for developing new fucoxanthin series products.
Collapse
Affiliation(s)
- Hongchun Dong
- College of Food Science and Engineering, Dalian Ocean University, Dalian, PR China
| | - Siyuan Wang
- College of Food Science and Engineering, Dalian Ocean University, Dalian, PR China
| | - Cong Fu
- College of Food Science and Engineering, Dalian Ocean University, Dalian, PR China
| | - Yanxiaofan Sun
- College of Food Science and Engineering, Dalian Ocean University, Dalian, PR China
| | - Tuantuan Wei
- College of Food Science and Engineering, Dalian Ocean University, Dalian, PR China
| | - Dandan Ren
- College of Food Science and Engineering, Dalian Ocean University, Dalian, PR China
- National R & D Branch Center for Seaweed Processing, Dalian, PR China
- Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian, PR China
| | - Qiukuan Wang
- College of Food Science and Engineering, Dalian Ocean University, Dalian, PR China
- National R & D Branch Center for Seaweed Processing, Dalian, PR China
- Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian, PR China
| |
Collapse
|
2
|
Yusof Z, Khong NM, Choo WS, Foo SC. Opportunities for the marine carotenoid value chain from the perspective of fucoxanthin degradation. Food Chem 2022; 383:132394. [DOI: 10.1016/j.foodchem.2022.132394] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 01/23/2022] [Accepted: 02/06/2022] [Indexed: 12/26/2022]
|
3
|
Sharma G, Alle M, Chakraborty C, Kim JC. Strategies for transdermal drug delivery against bone disorders: A preclinical and clinical update. J Control Release 2021; 336:375-395. [PMID: 34175368 DOI: 10.1016/j.jconrel.2021.06.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 12/01/2022]
Abstract
The transdermal drug delivery system is an exceptionally safe and well-tolerable therapeutic approach that has immense potential for delivering active components against bone-related pathologies. However, its use is limited in the current clinical practices due to the low skin permeability of most active drugs in the formulation. Thus, innovations in the methodologies of skin permeation enhancement techniques are suggested to overcome this limitation. Although various transdermal drug delivery systems are studied to date, there are insufficient studies comparing the therapeutic efficacy of transdermal delivery systems to oral delivery systems. Thus, creating a decision-making dilemma between oral or transdermal therapies. Therefore, a timely review is inevitable to develop a platform for future researchers to develop next-generation transdermal drug delivery strategies against skeletal diseases that must be convenient and cost-effective for the patients with improved therapeutic efficacy. Here, we will outline the most recent strategies that can overcome the choice limitation of the drug and enhance the transdermal adsorption of various types of drugs to treat bone disorders. For the first time, in this review paper, we will highlight the preclinical and clinical studies on the different transdermal delivery methods. Thus, providing insight into the current therapeutic approaches and suggesting new directions for the advancements in transdermal drug delivery systems against bone disorders.
Collapse
Affiliation(s)
- Garima Sharma
- Department of Biomedical Science & Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Madhusudhan Alle
- Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Barasat-Barrackpore Rd, Kolkata, West Bengal 700126, India
| | - Jin-Chul Kim
- Department of Biomedical Science & Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon 24341, Republic of Korea.
| |
Collapse
|
4
|
Malgarim Cordenonsi L, Faccendini A, Catanzaro M, Bonferoni MC, Rossi S, Malavasi L, Platcheck Raffin R, Scherman Schapoval EE, Lanni C, Sandri G, Ferrari F. The role of chitosan as coating material for nanostructured lipid carriers for skin delivery of fucoxanthin. Int J Pharm 2019; 567:118487. [PMID: 31271813 DOI: 10.1016/j.ijpharm.2019.118487] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 06/28/2019] [Accepted: 06/29/2019] [Indexed: 12/20/2022]
Abstract
Fucoxanthin (FUCO) is a marine carotenoid characterized by antiproliferative properties against hyperproliferative cells. The aim of this work was to design and develop nanostructured lipidic carriers (NLCs) based on bacuri butter and tucumã oil and loaded with FUCO, intended for skin application to prevent skin hyperproliferative diseases and in particular psoriasis. The presence of FUCO should control the hyperproliferation of skin diseased cells and the lipids forming the NLC core, rich in antioxidants and characterized by wound healing properties, should favor the restoring of skin integrity. NLCs were coated with chitosan (CS) to improve their biopharmaceutical properties (bio/mucoadhesion and wound healing) and to combine the advantages of lipidic nanoparticles with the biological properties of CS. Chitosan coated and non-coated NLC were prepared by means of high shear homogenization and characterized for chemico-physical and biopharmaceutical properties (in vitro biocompatibility and cell uptake towards normal dermal human fibroblasts). Moreover, the pharmacological activity of FUCO loaded in NLCs was assessed in psoriatic-like cellular model. NLCs were characterized by dimensions ranging from about 250 to 400 nm. Moreover, the CS coating and FUCO loading determined an increase of size. Moreover, TEM and zeta potential analysis confirmed the presence of CS coating on nanoparticle surface, thus conferring to nanoparticle good bioadhesion properties. NLCs uptake in fibroblasts was observed and NLC-FUCO-CS caused a reduction of cell viability with a less marked effect in fibroblasts rather than in psoriatic cells, highlighting the capability of this system to control skin hyperproliferation and inflammation. The loading of NLC-FUCO-CS in pullulan film should render NLCs application easy, without impair prompt interaction of the drug with the skin. Considering the overall results skin application of CS coated NLCs loaded with FUCO seems a promising approach to control skin hyperproliferation and to preserve skin integrity in psoriatic skin.
Collapse
Affiliation(s)
- Leticia Malgarim Cordenonsi
- Laboratório de Controle de Qualidade Farmacêutico/Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Ipiranga, Porto Alegre, Brazil
| | - Angela Faccendini
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Michele Catanzaro
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | | | - Silvia Rossi
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Lorenzo Malavasi
- Department of Chemistry, Physical Chemistry, University of Pavia, viale Taramelli 12, 27100 Pavia, Italy
| | - Renata Platcheck Raffin
- Laboratório de Controle de Qualidade Farmacêutico/Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Ipiranga, Porto Alegre, Brazil
| | - Elfrides Eva Scherman Schapoval
- Laboratório de Controle de Qualidade Farmacêutico/Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Ipiranga, Porto Alegre, Brazil
| | - Cristina Lanni
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Giuseppina Sandri
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Franca Ferrari
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
5
|
Rodríguez-Luna A, Ávila-Román J, González-Rodríguez ML, Cózar MJ, Rabasco AM, Motilva V, Talero E. Fucoxanthin-Containing Cream Prevents Epidermal Hyperplasia and UVB-Induced Skin Erythema in Mice. Mar Drugs 2018; 16:E378. [PMID: 30308980 PMCID: PMC6212948 DOI: 10.3390/md16100378] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/03/2018] [Accepted: 10/08/2018] [Indexed: 12/13/2022] Open
Abstract
Microalgae represent a source of bio-active compounds such as carotenoids with potent anti-inflammatory and antioxidant properties. We aimed to investigate the effects of fucoxanthin (FX) in both in vitro and in vivo skin models. Firstly, its anti-inflammatory activity was evaluated in LPS-stimulated THP-1 macrophages and TNF-α-stimulated HaCaT keratinocytes, and its antioxidant activity in UVB-irradiated HaCaT cells. Next, in vitro and ex vivo permeation studies were developed to determine the most suitable formulation for in vivo FX topical application. Then, we evaluated the effects of a FX-containing cream on TPA-induced epidermal hyperplasia in mice, as well as on UVB-induced acute erythema in hairless mice. Our results confirmed the in vitro reduction of TNF-α, IL-6, ROS and LDH production. Since the permeation results showed that cream was the most favourable vehicle, FX-cream was elaborated. This formulation effectively ameliorated TPA-induced hyperplasia, by reducing skin edema, epidermal thickness, MPO activity and COX-2 expression. Moreover, FX-cream reduced UVB-induced erythema through down-regulation of COX-2 and iNOS as well as up-regulation of HO-1 protein via Nrf-2 pathway. In conclusion, FX, administered in a topical formulation, could be a novel natural adjuvant for preventing exacerbations associated with skin inflammatory pathologies as well as protecting skin against UV radiation.
Collapse
Affiliation(s)
- Azahara Rodríguez-Luna
- Department of Pharmacology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Seville, Spain.
| | - Javier Ávila-Román
- Department of Pharmacology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Seville, Spain.
| | | | - María José Cózar
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Seville, Spain.
| | - Antonio M Rabasco
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Seville, Spain.
| | - Virginia Motilva
- Department of Pharmacology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Seville, Spain.
| | - Elena Talero
- Department of Pharmacology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Seville, Spain.
| |
Collapse
|
6
|
Rastogi V, Yadav P, Verma A, Pandit JK. Ex vivo and in vivo evaluation of microemulsion based transdermal delivery of E. coli specific T4 bacteriophage: A rationale approach to treat bacterial infection. Eur J Pharm Sci 2017; 107:168-182. [DOI: 10.1016/j.ejps.2017.07.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 06/06/2017] [Accepted: 07/11/2017] [Indexed: 01/21/2023]
|