1
|
Yu H, Yu J, Li L, Zhang Y, Xin S, Ni X, Sun Y, Song K. Recent Progress of the Practical Applications of the Platinum Nanoparticle-Based Electrochemistry Biosensors. Front Chem 2021; 9:677876. [PMID: 34012952 PMCID: PMC8128108 DOI: 10.3389/fchem.2021.677876] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/07/2021] [Indexed: 11/28/2022] Open
Abstract
The detection of biomolecules using various biosensors with excellent sensitivity, selectivity, stability, and reproducibility, is of great significance in the analytical and biomedical fields toward achieving their practical applications. Noble metal nanoparticles are favorable candidates due to their unique optical, surface electrical effect, and catalytic properties. Among these noble metal nanoparticles, platinum nanoparticles (Pt NPs) have been widely employed for the detection of bioactive substances such as glucose, glutamic acid, and hormones. However, there is still a long way to go before the potential challenges in the practical applications of biomolecules are fully overcome. Bearing this in mind, combined with our research experience, we summarized the recent progress of the Pt NP-based biosensors and highlighted the current problems that exist in their practical applications. The current review would provide fundamental guidance for future applications using the Pt NP-based biosensors in food, agricultural, and medical fields.
Collapse
Affiliation(s)
- Han Yu
- School of Life Sciences, Changchun Normal University, Changchun, China
| | - Jingbo Yu
- School of Life Sciences, Changchun Normal University, Changchun, China
| | - Linlin Li
- School of Life Sciences, Changchun Normal University, Changchun, China
| | - Yujia Zhang
- School of Life Sciences, Changchun Normal University, Changchun, China
| | - Shuquan Xin
- School of Life Sciences, Changchun Normal University, Changchun, China
| | - Xiuzhen Ni
- School of Life Sciences, Changchun Normal University, Changchun, China
| | - Yuan Sun
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin, China
| | - Kai Song
- School of Life Sciences, Changchun Normal University, Changchun, China
| |
Collapse
|
2
|
Raja Jamaluddin RZA, Tan LL, Chong KF, Heng LY. An electrochemical DNA biosensor fabricated from graphene decorated with graphitic nanospheres. NANOTECHNOLOGY 2020; 31:485501. [PMID: 32748805 DOI: 10.1088/1361-6528/abab2e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Graphene decorated with graphitic nanospheres functionalized with pyrene butyric acid (PBA) is used for the first time to fabricate a DNA biosensor. The electrode was formed by attaching a DNA probe onto PBA, which had been stacked onto a graphene material decorated with graphene nanospheres (GNSs). The nanomaterial was drop-coated onto a carbon screen-printed electrode (SPE) to create the GNS-PBA modified electrode (GNS-PBA/SPE). A simple method was used to produce GNS by annealing graphene oxide (GO) solution at high temperature. Field emission scanning electron micrographs confirmed the presence of a spherical shape of GNS with a diameter range of 40-80 nm. A stable and uniform PBA-modified GNS (GNS-PBA) was obtained with a facile ultrasonication step. Thus allowing aminated DNA probes of genetically modified (GM) soybean to be attached to the nanomaterials to form the DNA biosensor. The GNS-PBA/SPE exhibited excellent electrical conductivity via cyclic voltammetry (CV) and differential pulse voltammetry (DPV) tests using potassium ferricyanide (K3[Fe(CN)6]) as the electroactive probe. By employing an anthraquinone monosulfonic acid (AQMS) redox intercalator as the DNA hybridization indicator, the biosensor response was evaluated using the DPV electrochemical method. A good linear relationship between AQMS oxidation peak current and target DNA concentrations from 1.0 × 10-16 to 1.0 × 10-8 M with a limit of detection (LOD) of less than 1.0 × 10-16 M was obtained. Selectivity experiments revealed that the voltammetric GM DNA biosensor could discriminate complementary sequences of GM soybean from non-complementary sequences and hence good recoveries were obtained for real GM soybean sample analysis. The main advantage of using GNS is an improvement of the DNA biosensor analytical performance.
Collapse
Affiliation(s)
- Raja Zaidatul Akhmar Raja Jamaluddin
- School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Darul Ehsan 43600, Malaysia
| | | | | | | |
Collapse
|
3
|
Niu C, Xu Y, Zhang C, Zhu P, Huang K, Luo Y, Xu W. Ultrasensitive Single Fluorescence-Labeled Probe-Mediated Single Universal Primer-Multiplex-Droplet Digital Polymerase Chain Reaction for High-Throughput Genetically Modified Organism Screening. Anal Chem 2018; 90:5586-5593. [PMID: 29652133 DOI: 10.1021/acs.analchem.7b03974] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
As genetically modified (GM) technology develops and genetically modified organisms (GMOs) become more available, GMOs face increasing regulations and pressure to adhere to strict labeling guidelines. A singleplex detection method cannot perform the high-throughput analysis necessary for optimal GMO detection. Combining the advantages of multiplex detection and droplet digital polymerase chain reaction (ddPCR), a single universal primer-multiplex-ddPCR (SUP-M-ddPCR) strategy was proposed for accurate broad-spectrum screening and quantification. The SUP increases efficiency of the primers in PCR and plays an important role in establishing a high-throughput, multiplex detection method. Emerging ddPCR technology has been used for accurate quantification of nucleic acid molecules without a standard curve. Using maize as a reference point, four heterologous sequences ( 35S, NOS, NPTII, and PAT) were selected to evaluate the feasibility and applicability of this strategy. Surprisingly, these four genes cover more than 93% of the transgenic maize lines and serve as preliminary screening sequences. All screening probes were labeled with FAM fluorescence, which allows the signals from the samples with GMO content and those without to be easily differentiated. This fiveplex screening method is a new development in GMO screening. Utilizing an optimal amplification assay, the specificity, limit of detection (LOD), and limit of quantitation (LOQ) were validated. The LOD and LOQ of this GMO screening method were 0.1% and 0.01%, respectively, with a relative standard deviation (RSD) < 25%. This method could serve as an important tool for the detection of GM maize from different processed, commercially available products. Further, this screening method could be applied to other fields that require reliable and sensitive detection of DNA targets.
Collapse
Affiliation(s)
- Chenqi Niu
- Laboratory of Food Safety, College of Food Science and Nutritional Engineering , China Agricultural University , Beijing 100083 , China
| | - Yuancong Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering , China Agricultural University , Beijing 100083 , China.,Laboratory of Food Safety, College of Food Science and Nutritional Engineering , China Agricultural University , Beijing 100083 , China
| | - Chao Zhang
- Laboratory of Food Safety, College of Food Science and Nutritional Engineering , China Agricultural University , Beijing 100083 , China
| | - Pengyu Zhu
- The Institute of Plant Quarantine , Chinese Academy of Inspection and Quarantine , Beijing 100029 , China
| | - Kunlun Huang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering , China Agricultural University , Beijing 100083 , China.,Laboratory of Food Safety, College of Food Science and Nutritional Engineering , China Agricultural University , Beijing 100083 , China.,Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety) , Ministry of Agriculture , Beijing 100083 , China
| | - Yunbo Luo
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering , China Agricultural University , Beijing 100083 , China.,Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety) , Ministry of Agriculture , Beijing 100083 , China
| | - Wentao Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering , China Agricultural University , Beijing 100083 , China.,Laboratory of Food Safety, College of Food Science and Nutritional Engineering , China Agricultural University , Beijing 100083 , China.,Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety) , Ministry of Agriculture , Beijing 100083 , China
| |
Collapse
|
4
|
Sánchez-Paniagua López M, Manzanares-Palenzuela CL, López-Ruiz B. Biosensors for GMO Testing: Nearly 25 Years of Research. Crit Rev Anal Chem 2018; 48:391-405. [DOI: 10.1080/10408347.2018.1442708] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Marta Sánchez-Paniagua López
- Sección Departamental de Química Analítica, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | | | - Beatriz López-Ruiz
- Sección Departamental de Química Analítica, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
5
|
A nanobiosensor composed of Exfoliated Graphene Oxide and Gold Nano-Urchins, for detection of GMO products. Biosens Bioelectron 2017; 95:72-80. [DOI: 10.1016/j.bios.2017.02.054] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 02/25/2017] [Accepted: 02/28/2017] [Indexed: 01/14/2023]
|
6
|
Wang S, Liu Q, Li H, Li Y, Hao N, Qian J, Zhu W, Wang K. Fabrication of label-free electrochemical impedimetric DNA biosensor for detection of genetically modified soybean by recognizing CaMV 35S promoter. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.09.052] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
7
|
Martín-Fernández B, Manzanares-Palenzuela CL, Sánchez-Paniagua López M, de-los-Santos-Álvarez N, López-Ruiz B. Electrochemical genosensors in food safety assessment. Crit Rev Food Sci Nutr 2015; 57:2758-2774. [DOI: 10.1080/10408398.2015.1067597] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Begoña Martín-Fernández
- Sección Departamental de Química Analítica, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | | | - Marta Sánchez-Paniagua López
- Sección Departamental de Química Analítica, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | | | - Beatriz López-Ruiz
- Sección Departamental de Química Analítica, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
8
|
Electrochemical genosensors as innovative tools for detection of genetically modified organisms. Trends Analyt Chem 2015. [DOI: 10.1016/j.trac.2014.10.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Beni V, Gelaw TK, O'Sullivan CK. Study of the combination of the deposition/stripping of sacrificial metal nano-structures and alkanethiol as a route for genosensor surface preparation. Electrochem commun 2011. [DOI: 10.1016/j.elecom.2011.01.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
10
|
Gold coated ferric oxide nanoparticles based disposable magnetic genosensors for the detection of DNA hybridization processes. Biosens Bioelectron 2011; 26:2194-200. [DOI: 10.1016/j.bios.2010.09.034] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 09/14/2010] [Accepted: 09/18/2010] [Indexed: 11/13/2022]
|
11
|
Abu-Salah KM, Alrokyan SA, Khan MN, Ansari AA. Nanomaterials as analytical tools for genosensors. SENSORS (BASEL, SWITZERLAND) 2010; 10:963-93. [PMID: 22315580 PMCID: PMC3270881 DOI: 10.3390/s100100963] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2009] [Revised: 01/08/2010] [Accepted: 01/11/2010] [Indexed: 12/27/2022]
Abstract
Nanomaterials are being increasingly used for the development of electrochemical DNA biosensors, due to the unique electrocatalytic properties found in nanoscale materials. They offer excellent prospects for interfacing biological recognition events with electronic signal transduction and for designing a new generation of bioelectronic devices exhibiting novel functions. In particular, nanomaterials such as noble metal nanoparticles (Au, Pt), carbon nanotubes (CNTs), magnetic nanoparticles, quantum dots and metal oxide nanoparticles have been actively investigated for their applications in DNA biosensors, which have become a new interdisciplinary frontier between biological detection and material science. In this article, we address some of the main advances in this field over the past few years, discussing the issues and challenges with the aim of stimulating a broader interest in developing nanomaterial-based biosensors and improving their applications in disease diagnosis and food safety examination.
Collapse
Affiliation(s)
- Khalid M. Abu-Salah
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh-11451, P.O Box-2454, Saudi Arabia; E-Mails: (K.M.A.-S.); (S.A.A.); (M.N.K.)
| | - Salman A. Alrokyan
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh-11451, P.O Box-2454, Saudi Arabia; E-Mails: (K.M.A.-S.); (S.A.A.); (M.N.K.)
| | - Muhammad Naziruddin Khan
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh-11451, P.O Box-2454, Saudi Arabia; E-Mails: (K.M.A.-S.); (S.A.A.); (M.N.K.)
| | - Anees Ahmad Ansari
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh-11451, P.O Box-2454, Saudi Arabia; E-Mails: (K.M.A.-S.); (S.A.A.); (M.N.K.)
| |
Collapse
|