1
|
Koçak ÇC, Aslışen B, Karabiberoğlu Ş, Özdokur KV, Aslan A, Koçak S. Electrochemical Determination of Levofloxacin Using Poly(Pyrogallol Red) Modified Glassy Carbon Electrode. ChemistrySelect 2022. [DOI: 10.1002/slct.202201864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Burak Aslışen
- Applied Science Research Center Manisa Celal Bayar University 45040 Manisa Turkey
| | - Şükriye Karabiberoğlu
- Department of Chemistry Ege University Faculty of Science 35100 Bornova İzmir Turkey
| | - Kemal Volkan Özdokur
- Department of Chemistry Erzincan Binali Yıldırım University Science Faculty 24100 Erzincan Turkey
| | - Avni Aslan
- Department of Chemistry Manisa Celal Bayar University Science and Art Faculty 45040 Manisa Turkey
| | - Süleyman Koçak
- Department of Chemistry Manisa Celal Bayar University Science and Art Faculty 45040 Manisa Turkey
| |
Collapse
|
2
|
Nano optical and electrochemical sensors and biosensors for detection of narrow therapeutic index drugs. Mikrochim Acta 2021; 188:411. [PMID: 34741213 DOI: 10.1007/s00604-021-05003-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 08/24/2021] [Indexed: 01/02/2023]
Abstract
For the first time, a comprehensive review is presented on the quantitative determination of narrow therapeutic index drugs (NTIDs) by nano optical and electrochemical sensors and biosensors. NTIDs have a narrow index between their effective doses and those at which they produce adverse toxic effects. Therefore, accurate determination of these drugs is very important for clinicians to provide a clear judgment about drug therapy for patients. Routine analytical techniques have limitations such as being expensive, laborious, and time-consuming, and need a skilled user and therefore the nano/(bio)sensing technology leads to high interest.
Collapse
|
3
|
Olmo F, Garoz-Ruiz J, Carazo J, Colina A, Heras A. Spectroelectrochemical Determination of Isoprenaline in a Pharmaceutical Sample. SENSORS 2020; 20:s20185179. [PMID: 32932772 PMCID: PMC7571179 DOI: 10.3390/s20185179] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/04/2020] [Accepted: 09/09/2020] [Indexed: 01/21/2023]
Abstract
UV/Vis absorption spectroelectrochemistry (SEC) is a multi-response technique that has been commonly used for the characterization of materials and the study of reaction mechanisms. However, it has been scarcely used for quantitative purposes. SEC allows us to obtain two analytical signals simultaneously, yielding a dual sensor in just one experiment. In the last years, our group has developed new devices useful for analysis. In this work, a SEC device in parallel configuration, based on optical fibers fixed on screen-printed electrodes, was used to determine isoprenaline in a commercial drug, using both, the electrochemical and the spectroscopic signals. In this commercial drug, isoprenaline is accompanied in solution by other compounds. Among them is sodium metabisulfite, an antioxidant that strongly interferes in the isoprenaline determination. A simple pretreatment of the drug sample by bubbling wet-air allows us to avoid the interference of metabisulfite. Here, we demonstrate again the capabilities of UV/Vis absorption SEC as double sensor for analysis and we propose a simple pretreatment to remove interfering compounds.
Collapse
|
4
|
Abstract
Background:
The determination of drugs in pharmaceutical formulations and human biologic fluids is
important for pharmaceutical and medical sciences. Successful analysis requires low sensitivity, high selectivity
and minimum interference effects. Current analytical methods can detect drugs at very low levels but these methods
require long sample preparation steps, extraction prior to analysis, highly trained technical staff and high-cost
instruments. Biosensors offer several advantages such as short analysis time, high sensitivity, real-time analysis,
low-cost instruments, and short pretreatment steps over traditional techniques. Biosensors allow quantification not
only of the active component in pharmaceutical formulations, but also the degradation products and metabolites in
biological fluids. The present review gives comprehensive information on the application of biosensors for drug
discovery and analysis. Moreover, this review focuses on the fabrication of these biosensors.
Methods:
Biosensors can be classified as the utilized bioreceptor and the signal transduction mechanism. The classification
based on signal transductions includes electrochemical optical, thermal or acoustic. Electrochemical and
optic transducers are mostly utilized transducers used for drug analysis. There are many biological recognition elements,
such as enzymes, antibodies, cells that have been used in fabricating of biosensors. Aptamers and antibodies
are the most widely used recognition elements for the screening of the drugs. Electrochemical sensors and biosensors
have several advantages such as low detection limits, a wide linear response range, good stability and reproducibility.
Optical biosensors have several advantages such as direct, real-time and label-free detection of many
biological and chemical substances, high specificity, sensitivity, small size and low cost. Modified electrodes enhance
sensitivity of the electrodes to develop a new biosensor with desired features. Chemically modified electrodes
have gained attention in drug analysis owing to low background current, wide potential window range, simple
surface renewal, low detection limit and low cost. Modified electrodes produced by modifying of a solid surface
electrode via different materials (carbonaceous materials, metal nanoparticles, polymer, biomolecules) immobilization.
Recent advances in nanotechnology offer opportunities to design and construct biosensors. Unique features
of nanomaterials provide many advantages in the fabrication of biosensors. Nanomaterials have controllable
chemical structures, large surface to volume ratios, functional groups on their surface. To develop proteininorganic
hybrid nanomaterials, four preparation methods have been used. These methods are immobilization, conjugation,
crosslinking and self-assembly. In the present manuscript, applications of different biosensors, fabricated
by using several materials, for drug analysis are reviewed. The biosensing strategies are investigated and discussed
in detail.
Results:
Several analytical techniques such as chromatography, spectroscopy, radiometry, immunoassays and electrochemistry
have been used for drug analysis and quantification. Methods based on chromatography require timeconsuming
procedure, long sample-preparation steps, expensive instruments and trained staff. Compared to chromatographic
methods, immunoassays have simple protocols and lower cost. Electrochemical measurements have
many advantages over traditional chemical analyses and give information about drug quantity, metabolic fate of
drugs, and pharmacological activity. Moreover, the electroanalytical methods are useful to determine drugs sensitively
and selectivity. Additionally, these methods decrease analysis cost and require low-cost instruments and
simple sample pretreatment steps.
Conclusion:
In recent years, drug analyses are performed using traditional techniques. These techniques have a
good detection limit, but they have some limitations such as long analysis time, expensive device and experienced
personnel requirement. Increased demand for practical and low-cost analytical techniques biosensor has gained interest
for drug determinations in medical sciences. Biosensors are unique and successful devices when compared to
traditional techniques. For drug determination, different electrode modification materials and different biorecognition
elements are used for biosensor construction. Several biosensor construction strategies have been developed to
enhance the biosensor performance. With the considerable progress in electrode surface modification, promotes the
selectivity of the biosensor, decreases the production cost and provides miniaturization. In the next years, advances
in technology will provide low cost, sensitive, selective biosensors for drug analysis in drug formulations and biological
samples.
Collapse
Affiliation(s)
- Elif Burcu Aydin
- Namik Kemal University, Scientific and Technological Research Center, Tekirdag, Turkey
| | - Muhammet Aydin
- Namik Kemal University, Scientific and Technological Research Center, Tekirdag, Turkey
| | - Mustafa Kemal Sezginturk
- Canakkale Onsekiz Mart University, Faculty of Engineering, Bioengineering Department, Canakkale, Turkey
| |
Collapse
|
5
|
Ganesh PS, Kumara Swamy BE, Feyami OE, Ebenso EE. Interference free detection of dihydroxybenzene isomers at pyrogallol film coated electrode: A voltammetric method. J Electroanal Chem (Lausanne) 2018; 813:193-199. [DOI: 10.1016/j.jelechem.2018.02.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
6
|
Kurbanoglu S, Ozkan SA. Electrochemical carbon based nanosensors: A promising tool in pharmaceutical and biomedical analysis. J Pharm Biomed Anal 2017; 147:439-457. [PMID: 28780997 DOI: 10.1016/j.jpba.2017.06.062] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 06/22/2017] [Accepted: 06/27/2017] [Indexed: 12/19/2022]
Abstract
Nanotechnology has become very popular in the sensor fields in recent times. It is thought that the utilization of such technologies, as well as the use of nanosized materials, could well have beneficial effects for the performance of sensors. Nano-sized materials have been shown to have a number of novel and interesting physical and chemical properties. Low-dimensional nanometer-sized materials and systems have defined a new research area in condensed-matter physics within past decades. Apart from the aforesaid categories of materials, there exist various materials of different types for fabricating nanosensors. Carbon is called as a unique element, due to its magnificent applications in many areas. Carbon is an astonishing element that can be found many forms including graphite, diamond, fullerenes, and graphene. This review provides an overview of some of the important and recent developments brought about by the application of carbon based nanostructures to nanotechnology for both chemical and biological sensor development and their application in pharmaceutical and biomedical area.
Collapse
Affiliation(s)
- Sevinc Kurbanoglu
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06100, Tandogan, Ankara, Turkey
| | - Sibel A Ozkan
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06100, Tandogan, Ankara, Turkey.
| |
Collapse
|