1
|
Fu L, Liu K, Lyu Z, Sun Y, Cai J, Wang S, Wang Q, Xie S. Two-dimensional template-directed synthesis of one-dimensional kink-rich Pd 3Pb nanowires for efficient oxygen reduction. J Colloid Interface Sci 2023; 634:827-835. [PMID: 36565624 DOI: 10.1016/j.jcis.2022.12.091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/09/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
Developing facile synthetic strategies toward ultrafine one-dimensional (1D) nanowires (NWs) with rich catalytic hot spots is pivotal for exploring effective heterogeneous catalysts. Herein, we demonstrate a two-dimensional (2D) template-directed strategy for synthesizing 1D kink-rich Pd3Pb NWs with abundant grain boundaries to serve as high-efficiency electrocatalysts toward oxygen reduction reaction (ORR). In this one-pot synthesis, ultrathin Pd nanosheets were initially generated, which then served as self-sacrificial 2D nano-templates. A dynamic equilibrium growth was subsequently established on the 2D Pd nanosheets through the center-selected etching of Pd atoms and edge-preferred co-deposition of Pd/Pb atoms. This was followed by the oriented attachment of the generated Pd/Pb alloy nanograins and fragments. Thus, kink-rich Pd3Pb NWs with rich grain boundary defects were obtained in high yield, and these NWs were used as electrocatalytic active catalysts. The surface electronic interaction between Pd and Pb atoms effectively decreased the surface d-band center to weaken the binding of oxygen-containing intermediates toward improved ORR kinetics. Specifically, the kink-rich Pd3Pb NWs/C catalyst delivered outstanding ORR mass activity and specific activity (2.26 A⋅mgPd-1 and 2.59 mA⋅cm-2, respectively) in an alkaline solution. These values were respectively 13.3 and 10.8 times those of state-of-the-art commercial Pt/C catalyst. This study provides an innovative strategy for fabricating defect-rich low-dimensional nanocatalysts for efficient energy conversion catalysis.
Collapse
Affiliation(s)
- Luhong Fu
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Instrumental Analysis Center, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Kai Liu
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Instrumental Analysis Center, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China; College of Material and Chemical Engineering, Henan University of Urban Construction, Pingdingshan 467036, Henan, China
| | - Zixi Lyu
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Instrumental Analysis Center, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Yu Sun
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Instrumental Analysis Center, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Junlin Cai
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Instrumental Analysis Center, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Shupeng Wang
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Instrumental Analysis Center, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Qiuxiang Wang
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Instrumental Analysis Center, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Shuifen Xie
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Instrumental Analysis Center, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China.
| |
Collapse
|
2
|
Wang C, An C, Qin C, Gomaa H, Deng Q, Wu S, Hu N. Noble Metal-Based Catalysts with Core-Shell Structure for Oxygen Reduction Reaction: Progress and Prospective. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2480. [PMID: 35889703 PMCID: PMC9316484 DOI: 10.3390/nano12142480] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/17/2022] [Accepted: 07/18/2022] [Indexed: 01/27/2023]
Abstract
With the deterioration of the ecological environment and the depletion of fossil energy, fuel cells, representing a new generation of clean energy, have received widespread attention. This review summarized recent progress in noble metal-based core-shell catalysts for oxygen reduction reactions (ORRs) in proton exchange membrane fuel cells (PEMFCs). The novel testing methods, performance evaluation parameters and research methods of ORR were briefly introduced. The effects of the preparation method, temperature, kinds of doping elements and the number of shell layers on the ORR performances of noble metal-based core-shell catalysts were highlighted. The difficulties of mass production and the high cost of noble metal-based core-shell nanostructured ORR catalysts were also summarized. Thus, in order to promote the commercialization of noble metal-based core-shell catalysts, research directions and prospects on the further development of high performance ORR catalysts with simple synthesis and low cost are presented.
Collapse
Affiliation(s)
- Chao Wang
- Key Laboratory of Hebei Province on Scale-Span Intelligent Equipment Technology, School of Mechanical Engineering, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, China; (C.W.); (C.A.); (C.Q.)
| | - Cuihua An
- Key Laboratory of Hebei Province on Scale-Span Intelligent Equipment Technology, School of Mechanical Engineering, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, China; (C.W.); (C.A.); (C.Q.)
| | - Chunling Qin
- Key Laboratory of Hebei Province on Scale-Span Intelligent Equipment Technology, School of Mechanical Engineering, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, China; (C.W.); (C.A.); (C.Q.)
| | - Hassanien Gomaa
- Department of Chemistry, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt;
| | - Qibo Deng
- Key Laboratory of Hebei Province on Scale-Span Intelligent Equipment Technology, School of Mechanical Engineering, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, China; (C.W.); (C.A.); (C.Q.)
| | - Shuai Wu
- Key Laboratory of Hebei Province on Scale-Span Intelligent Equipment Technology, School of Mechanical Engineering, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, China; (C.W.); (C.A.); (C.Q.)
| | - Ning Hu
- State Key Laboratory of Reliability and Intelligence Electrical Equipment, Hebei University of Technology, Tianjin 300130, China;
- National Engineering Research Center for Technological Innovation Method and Tool, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
| |
Collapse
|
3
|
Shen J, Tang R, Huang J, Wu Y, Chen C, Zhou Q, Huang Y, Motkuri RK, Jin X, Cao H. Strain engineered gas-consumption electroreduction reactions: Fundamentals and perspectives. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|