1
|
Li M, Wei Y, Shi M. Electrochemically promoted tandem cyclization of functionalized methylenecyclopropanes: synthesis of tetracyclic benzazepine derivatives. Org Biomol Chem 2025; 23:4166-4171. [PMID: 40171828 DOI: 10.1039/d5ob00238a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
In this study, an electrocatalytic tandem cyclization reaction of amide-tethered methylenecyclopropanes has been developed, which can realize the rapid construction of tetracyclic benzazepine derivatives in moderate yields with good functional group compatibility under relatively mild conditions. In this transformation, the catalytic amount of ferrocene serves as the electrocatalytic medium, and electron transfer on electrodes can replace oxidants or reducing agents, which is more environmentally friendly than and economically comparable to traditional photocatalysis or metal catalysis. Moreover, the origin of the regiochemistry is well elucidated through density functional theory (DFT) calculations.
Collapse
Affiliation(s)
- Min Li
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, People's Republic of China
| | - Yin Wei
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| | - Min Shi
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, People's Republic of China
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| |
Collapse
|
2
|
Gui QW, Teng F, Yu P, Wu YF, Nong ZB, Yang LX, Chen X, Yang TB, He WM. Visible light-induced Z-scheme V2O5/g-C3N4 heterojunction catalyzed cascade reaction of unactivated alkenes. CHINESE JOURNAL OF CATALYSIS 2023. [DOI: 10.1016/s1872-2067(22)64162-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
3
|
Nitrenium ion-based ipso-addition and ortho-cyclization of arenes under photo and iron dual-catalysis. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
4
|
Liu J, Tang S, Wang S, Cao M, Zhao J, Zhang P, Li P. Visible-Light-Induced 1,6-Enynes Triggered C-Br Bond Homolysis of Bromomalonates: Solvent-Controlled Divergent Synthesis of Carbonylated and Hydroxylated Benzofurans. J Org Chem 2022; 87:9250-9258. [PMID: 35749743 DOI: 10.1021/acs.joc.2c00989] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Visible-light-induced 1,6-enyne-triggered C-Br bond homolysis of bromomalonates has been developed. This transition-metal-free, photocatalyst-free, and oxidant- and additive-free protocol affords an efficient approach for divergent synthesis of carbonylated and hydroxylated benzofurans from 1,6-enynes and bromomalonates under mild conditions. Significantly, mechanistic studies reveal that the homolysis of C-Br bonds appears to experience an energy-transfer pathway, and the atom-transfer radical addition products are the key intermediates to generate carbonylated and hydroxylated benzofurans.
Collapse
Affiliation(s)
- Jiupeng Liu
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, P. R. China
| | - Shuo Tang
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, P. R. China
| | - Shichong Wang
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, P. R. China
| | - Mengting Cao
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, P. R. China
| | - Jingjing Zhao
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, P. R. China
| | - Puyu Zhang
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, P. R. China
| | - Pan Li
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, P. R. China
| |
Collapse
|
5
|
Hou M, Zhang Z, Lai X, Zong Q, Jiang X, Guan M, Qi R, Qiu G. Photoredox/Iron Dual-Catalyzed Insertion of Acyl Nitrenes into C-H Bonds. Org Lett 2022; 24:4114-4118. [PMID: 35666621 DOI: 10.1021/acs.orglett.2c01176] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In this work, the use of N-acyloxybenzamides as efficient acyl nitrene precursors under photoredox/iron dual catalysis is reported. The resulting acyl nitrenes could be captured by various types of C-H bonds and S- or P-containing molecules. Mechanism investigations suggested that the formation of the acyl nitrene from the N-acyloxybenzamide occurs by a photoredox process, and it is believed that in this redox process oxidative N-H bond cleavage of the N-acyloxybenzamide occurs prior to reductive N-O bond cleavage of the N-acyloxybenzamide.
Collapse
Affiliation(s)
- Ming Hou
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 341014, China.,College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China
| | - Zhide Zhang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China
| | - Xiaojing Lai
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China
| | - Qianshou Zong
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China
| | - Xinpeng Jiang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 341014, China
| | - Meng Guan
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China
| | - Rui Qi
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China
| | - Guanyinsheng Qiu
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China
| |
Collapse
|
6
|
Zhang WK, Li JZ, Zhang CC, Zhang J, Zheng YN, Hu Y, Li T, Wei WT. The Synthesis of Polycyclic Quinazolinones via C(sp3)–H Functionalization of Inert Alkanes or Visible‐light Promoted Oxidation Decarboxylation of N‐hydroxyphthalimide (NHP‐esters). European J Org Chem 2022. [DOI: 10.1002/ejoc.202200523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
| | | | | | | | | | | | - Ting Li
- Nanyang Normal University chemistry CHINA
| | - Wen-Ting Wei
- Ningbo University Materials Science and Chemical Engineering 818, Fenghua Road, Jiangbei District 315211 Ningbo CHINA
| |
Collapse
|
7
|
Patel RI, Singh J, Sharma A. Visible Light‐Mediated Manipulation of 1,n‐Enynes in Organic Synthesis. ChemCatChem 2022. [DOI: 10.1002/cctc.202200260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Roshan I. Patel
- IIT Roorkee: Indian Institute of Technology Roorkee CHEMISTRY INDIA
| | - Jitender Singh
- IIT Roorkee: Indian Institute of Technology Roorkee CHEMISTRY INDIA
| | - Anuj Sharma
- Indian Institute of Technoology Roorkee Deptartment of Chemistry Room 303DDepartment of Chemistry, IIT Roorkee 247667 Roorkee INDIA
| |
Collapse
|
8
|
Zheng YN, Liu Y, Cai XE, Wu HL, Huang XJ, Liu Y, Wei WT. Ring‐opening/cyclization of cyclobutanone oxime esters with alkenes in biomass‐derived solvent using copper catalyst and inorganic oxidant. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yan-Nan Zheng
- Ningbo University School of Materials Science and Chemical Engineering 315211 Ningbo CHINA
| | - Yi Liu
- Ningbo University School of Materials Science and Chemical Engineering 315211 Ningbo CHINA
| | - Xue-Er Cai
- Ningbo University School of Materials Science and Chemical Engineering 315211 Ningbo CHINA
| | - Hong-Li Wu
- Ningbo University School of Materials Science and Chemical Engineering 315211 Ningbo CHINA
| | - Xun-Jie Huang
- Ningbo University School of Materials Science and Chemical Engineering 315211 Ningbo CHINA
| | - Yilin Liu
- Huaihua University College of Chemistry and Materials Engineering 418008 Huaihua CHINA
| | - Wen-Ting Wei
- Ningbo University Materials Science and Chemical Engineering 818, Fenghua Road, Jiangbei District 315211 Ningbo CHINA
| |
Collapse
|
9
|
Yang D, Yan Q, Zhu E, Lv J, He WM. Carbon–sulfur bond formation via photochemical strategies: An efficient method for the synthesis of sulfur-containing compounds. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.09.068] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Yang S, Song J, Dong D, Yang H, Zhou M, Zhang H, Wang Z. Progress of N-Amino Pyridinium Salts as Nitrogen Radical Precursors in Visible Light Induced C—N Bond Formation Reactions. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202207019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
11
|
Zhang L, Wang Y, Zhu G, Dai W, Zhao Z, Zhao Y, Zhi J, Dong Y. Aggregation-Induced Emission and Mechanochromism of the Tetraphenylbutadiene Derivatives Containing Different Alkyl Chains. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a21120556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Zheng YN, Zheng H, Li T, Wei WT. Recent Advances in Copper-Catalyzed C-N Bond Formation Involving N-Centered Radicals. CHEMSUSCHEM 2021; 14:5340-5358. [PMID: 34750973 DOI: 10.1002/cssc.202102243] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/09/2021] [Indexed: 06/13/2023]
Abstract
C-N bonds are pervasive throughout organic-based materials, natural products, pharmaceutical compounds, and agricultural chemicals. Considering the widespread importance of C-N bonds, the development of greener and more convenient ways to form C-N bonds, especially in late-stage synthesis, has become one of the hottest research goals in synthetic chemistry. Copper-catalyzed radical reactions involving N-centered radicals have emerged as a sustainable and promising approach to build C-N bonds. As a chemically popular and diverse radical species, N-centered radicals have been used for all kinds of reactions for C-N bond formation by taking advantage of their inherently incredible reactive flexibility. Copper is also the most abundant and economic catalyst with the most relevant activity for facilitating the synthesis of valuable compounds. Therefore, the aim of the present Review was to illustrate recent and significant advances in C-N bond formation methods and to understand the unique advantages of copper catalysis in the generation of N-centered radicals since 2016. To provide an ease of understanding for the readers, this Review was organized based on the types of nitrogen sources (amines, amides, sulfonamides, oximes, hydrazones, azides, and tert-butyl nitrite).
Collapse
Affiliation(s)
- Yan-Nan Zheng
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| | - Hongxing Zheng
- Institution of Functional Organic Molecules and Materials, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong, 252059, P. R. China
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, Henan, 473061, P. R. China
| | - Ting Li
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, Henan, 473061, P. R. China
| | - Wen-Ting Wei
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| |
Collapse
|
13
|
Kang QQ, Liu Y, Wu SP, Ge GP, Zheng H, Zhang JQ, Wei WT. Selective divergent radical cyclization of 1,6-dienes with alkyl nitriles. Org Biomol Chem 2021; 19:9501-9505. [PMID: 34709283 DOI: 10.1039/d1ob01620b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
An efficient, selective, and step economical radical cyclization of 1,6-dienes with alkyl nitriles initiated by α-C(sp3)-H functionalization under the Sc(OTf)3 and Ag2CO3 system is described here. The selective divergent cyclization relies on the substitution effect at the α-position of the acrylamide moiety and nitriles, which is terminated by hydrogen abstraction, direct cyclization with the aryl ring, or further cyclization with the CN bond and hydrolysis, respectively.
Collapse
Affiliation(s)
- Qing-Qing Kang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Yi Liu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Shi-Ping Wu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Guo-Ping Ge
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Hongxing Zheng
- Institution of Functional Organic Molecules and Materials, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong, 252059, China
| | - Jun-Qi Zhang
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou, 318000, China
| | - Wen-Ting Wei
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China.
| |
Collapse
|
14
|
Yang WC, Chen CY, Li JF, Wang ZL. Radical denitrogenative transformations of polynitrogen heterocycles: Building C–N bonds and beyond. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(21)63814-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
15
|
Jiang LL, Hu SJ, Xu Q, Zheng H, Wei WT. Radical Cyclization of 1,n-Enynes and 1,n-Dienes for the Synthesis of 2-Pyrrolidone. Chem Asian J 2021; 16:3068-3081. [PMID: 34423568 DOI: 10.1002/asia.202100829] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/14/2021] [Indexed: 12/17/2022]
Abstract
2-Pyrrolidones have aroused enormous interest as a useful structural moiety in drug discovery; however, not only does their syntheses suffer from low selectivity and yield, but also it requires high catalyst loadings. The radical cyclization of 1,n-enynes and 1,n-dienes has demonstrated to be an attractive method for the synthesis of 2-pyrrolidones due to its mild reaction conditions, fewer steps, higher atom economy, excellent functional group compatibility, and high regioselectivity. Furthermore, radical receptors with unsaturated bonds (i. e. 1,n-enynes and 1,n-dienes) play a crucial role in realizing radical cyclization because of the ability to selectively introduce one or more radical sources. In this review, we discuss representative examples of methods involving the radical cyclization of 1,n-enynes and 1,n-dienes published in the last five years and discuss each prominent reaction design and mechanism, providing favorable tools for the synthesis of valuable 2-pyrrolidone for a variety of applications.
Collapse
Affiliation(s)
- Li-Lin Jiang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| | - Sen-Jie Hu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| | - Qing Xu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| | - Hongxing Zheng
- Institution of Functional Organic Molecules and Materials, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, P. R. China
| | - Wen-Ting Wei
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| |
Collapse
|
16
|
Jha N, Khot NP, Kapur M. Transition-Metal-Catalyzed C-H Bond Functionalization of Arenes/Heteroarenes via Tandem C-H Activation and Subsequent Carbene Migratory Insertion Strategy. CHEM REC 2021; 21:4088-4122. [PMID: 34647679 DOI: 10.1002/tcr.202100193] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 12/20/2022]
Abstract
The past decade has witnessed tremendous developments in transition-metal-catalyzed C-H bond activation and subsequent carbene migratory insertion reactions, thus assisting in the construction of diverse arene/heteroarene scaffolds. Various transition-metal catalysts serve this purpose and provide efficient pathways for an easy access to substituted heterocycles. A brief introduction to metal-carbenes has been provided along with key mechanistic pathways underlying the coupling reactions. The purpose of this review is to provide a concise knowledge about diverse directing group-assisted coupling of varied arenes/heteroarenes and acceptor-acceptor/donor-acceptor diazo compounds. The review also highlights the synthesis of various carbocycles and fused heterocycles through diazo insertion pathways, via C-C, C-N and C-O bond forming reactions. The mechanism usually involves a C-H activation process, followed by diazo insertion leading to subsequent coupling.
Collapse
Affiliation(s)
- Neha Jha
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhauri, Bhopal, 462066, Madhya Pradesh, India
| | - Nandkishor Prakash Khot
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhauri, Bhopal, 462066, Madhya Pradesh, India
| | - Manmohan Kapur
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhauri, Bhopal, 462066, Madhya Pradesh, India
| |
Collapse
|
17
|
Paul N, Maity S, Panja S, Maiti D. Recent Advances in the Nitration of Olefins. CHEM REC 2021; 21:2896-2908. [PMID: 34569706 DOI: 10.1002/tcr.202100217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/07/2021] [Indexed: 12/24/2022]
Abstract
Nitroolefins are important synthetic intermediates in the field of organic synthesis as well as in medicinal chemistry. The high reactivity of nitroalkenes due to the polarized double bond which enables them to act as Michael acceptor in conjugate addition reactions, or as a dienophile in cycloaddition makes it an essential synthetic handle for accessing complex molecules. The classical method to prepare nitroolefins is indeed the Henry nitroaldol reaction, where a carbonyl compound and nitroalkane are condensed in presence of base. Direct nitration of olefin, on the other hand, serves as a useful alternative as olefins are abundant, have broad commercial availability and easy to manipulate. In this context, numerous methods have been developed over the last few decades, focusing on direct nitration of styrene and aliphatic olefins. Furthermore, thorough literature search revealed that implementation of this class of reactions are gaining momentum as a preferred pathway to access nitroolefins, despite the presence of a powerful technique such as Henry reaction. In this review, we aim to cover recent advances in direct olefin nitration and their importance in accessing biorelevant molecules, total synthesis targets and future outlook in this specific research area.
Collapse
Affiliation(s)
- Nilanjan Paul
- IIT Hyderabad, Department of Chemistry Kandi, 502285, Telangana, India
| | - Soham Maity
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, 400076, Mumbai, India
| | - Subir Panja
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, 400076, Mumbai, India
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, 400076, Mumbai, India
| |
Collapse
|
18
|
Chen JY, Wu HY, Gui QW, Yan SS, Deng J, Lin YW, Cao Z, He WM. Sustainable electrochemical cross-dehydrogenative coupling of 4-quinolones and diorganyl diselenides. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(20)63750-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Wu SP, Wang DK, Kang QQ, Ge GP, Zheng H, Zhu M, Li T, Zhang JQ, Wei WT. Sulfonyl radical triggered selective iodosulfonylation and bicyclization of 1,6-dienes. Chem Commun (Camb) 2021; 57:8288-8291. [PMID: 34318821 DOI: 10.1039/d1cc03252f] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A novel sulfonyl radical triggered selective iodosulfonylation and bicyclization of 1,6-dienes has been described for the first time. High selectivity and efficiency, mild reaction conditions, excellent functional group compatibility, and broad substrate scope are the attractive features of this synthetic protocol, which provides a unique platform for precise radical cyclization.
Collapse
Affiliation(s)
- Shi-Ping Wu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Liu YL, Ouyang YJ, Zheng H, Liu H, Wei WT. Recent advances in acyl radical enabled reactions between aldehydes and alkenes. Chem Commun (Camb) 2021; 57:6111-6120. [PMID: 34113948 DOI: 10.1039/d1cc02112e] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Radical-mediated functionalization of alkenes has been emerging as an elegant and straightforward protocol to increase molecule complexity. Moreover, the abstraction of a hydrogen atom from aldehydes to afford acyl radicals has evolved as a rising star due to its high atom-economy and the ready availability of aldehydes. Considering the great influence and synthetic potential of acyl radical enabled reactions between aldehydes and alkenes, we provide a summary of the state of the art in this field with a specific emphasis on the working models and corresponding mechanisms. The discussion is divided according to the kind of alkenes and reaction type.
Collapse
Affiliation(s)
- Yi-Lin Liu
- College of Chemistry and Materials Engineering, Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol (PVA) Fiber Material, Huaihua University, Huaihua, Hunan 418008, China.
| | - Yue-Jun Ouyang
- College of Chemistry and Materials Engineering, Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol (PVA) Fiber Material, Huaihua University, Huaihua, Hunan 418008, China.
| | - Hongxing Zheng
- Institution of Functional Organic Molecules and Materials, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, China and College of Chemistry and Materials Engineering, Institute of New Materials & Industrial Technology, Wenzhou University, Wenzhou, 325035, China
| | - Hongxin Liu
- College of Chemistry and Materials Engineering, Institute of New Materials & Industrial Technology, Wenzhou University, Wenzhou, 325035, China
| | - Wen-Ting Wei
- College of Chemistry and Materials Engineering, Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol (PVA) Fiber Material, Huaihua University, Huaihua, Hunan 418008, China. and School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| |
Collapse
|
21
|
Visible-light-initiated tandem synthesis of difluoromethylated oxindoles in 2-MeTHF under additive-, metal catalyst-, external photosensitizer-free and mild conditions. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.01.021] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
22
|
Geng F, Wang S, Song K, Hao W, Jiang B. Visible-Light-Driven Photocatalytic Kharasch-Type Addition of 1,6-Enynes. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202106014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
23
|
Kang QQ, Meng YN, Zhang JH, Li L, Ge GP, Zheng H, Liu H, Wei WT. Iron-catalyzed oxidative cyclization of olefinic 1,3-dicarbonyls with ketone C(sp 3)–H bonds: facile access to 2,3-dihydrofurans. NEW J CHEM 2021. [DOI: 10.1039/d1nj02378k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The reaction involves the addition of an α-carbonyl radical to the CC bond of olefinic 1,3-dicarbonyls followed by intramolecular 5-endo-trig cyclization.
Collapse
Affiliation(s)
- Qing-Qing Kang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products
- School of Materials Science and Chemical Engineering
- Ningbo University
- Ningbo
| | - Ya-Nan Meng
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products
- School of Materials Science and Chemical Engineering
- Ningbo University
- Ningbo
| | - Jun-Hao Zhang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products
- School of Materials Science and Chemical Engineering
- Ningbo University
- Ningbo
| | - Long Li
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products
- School of Materials Science and Chemical Engineering
- Ningbo University
- Ningbo
| | - Guo-Ping Ge
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products
- School of Materials Science and Chemical Engineering
- Ningbo University
- Ningbo
| | - Hongxing Zheng
- Institution of Functional Organic Molecules and Materials
- School of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng
- China
| | - Hongxin Liu
- College of Chemistry and Materials Engineering
- Institute of New Materials & Industrial Technology
- Wenzhou University
- Wenzhou
- China
| | - Wen-Ting Wei
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products
- School of Materials Science and Chemical Engineering
- Ningbo University
- Ningbo
| |
Collapse
|
24
|
Kalita P, Das DR, Hazarika D, Talukdar AK. Catalytic activity of a microporous–mesoporous composite towards liquid phase oxidation of diphenylmethane. NEW J CHEM 2021. [DOI: 10.1039/d1nj03577k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cobalt-loaded ZSM-5/MCM-41 composites were synthesized and characterized by different characterization techniques and the catalytic activity of the synthesized materials was studied for liquid phase oxidation of diphenylmethane.
Collapse
Affiliation(s)
- Priyanka Kalita
- Department of Chemistry, Gauhati University, Guwahati-781014, Assam, India
| | - Doli Rani Das
- Department of Chemistry, Gauhati University, Guwahati-781014, Assam, India
| | | | | |
Collapse
|