1
|
Liu Q, Kwan KY, Cao T, Yan B, Ganesan K, Jia L, Zhang F, Lim C, Wu Y, Feng Y, Chen Z, Liu L, Chen J. Broad-spectrum antiviral activity of Spatholobus suberectus Dunn against SARS-CoV-2, SARS-CoV-1, H5N1, and other enveloped viruses. Phytother Res 2022; 36:3232-3247. [PMID: 35943221 PMCID: PMC9537938 DOI: 10.1002/ptr.7452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/05/2022] [Accepted: 03/10/2022] [Indexed: 02/06/2023]
Abstract
The current COVID-19 pandemic caused by SARS-Cov-2 is responsible for more than 6 million deaths globally. The development of broad-spectrum and cost-effective antivirals is urgently needed. Medicinal plants are renowned as a complementary approach in which antiviral natural products have been established as safe and effective drugs. Here, we report that the percolation extract of Spatholobus suberectus Dunn (SSP) is a broad-spectrum viral entry inhibitor against SARS-CoV-1/2 and other enveloped viruses. The viral inhibitory activities of the SSP were evaluated by using pseudotyped SARS-CoV-1 and 2, HIV-1ADA and HXB2 , and H5N1. SSP effectively inhibited viral entry and with EC50 values ranging from 3.6 to 5.1 μg/ml. Pre-treatment of pseudovirus or target cells with SSP showed consistent inhibitory activities with the respective EC50 value of 2.3 or 2.1 μg/ml. SSP blocked both SARS-CoV-2 spike glycoprotein and the host ACE2 receptor. In vivo studies indicated that there was no abnormal toxicity and behavior in long-term SSP treatment. Based on these findings, we concluded that SSP has the potential to be developed as a drug candidate for preventing and treating COVID-19 and other emerging enveloped viruses.
Collapse
Affiliation(s)
- Qingqing Liu
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Shenzhen Institute of Research and Innovation, University of Hong Kong, Shenzhen, China
| | - Ka-Yi Kwan
- AIDS Institute, State Key Laboratory of Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Tianyu Cao
- AIDS Institute, State Key Laboratory of Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Department of Immunology and Department of Dermatology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Bingpeng Yan
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kumar Ganesan
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Lei Jia
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Shenzhen Institute of Research and Innovation, University of Hong Kong, Shenzhen, China
| | - Feng Zhang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Shenzhen Institute of Research and Innovation, University of Hong Kong, Shenzhen, China
| | - Chunyu Lim
- AIDS Institute, State Key Laboratory of Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yaobin Wu
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, Department of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Zhiwei Chen
- AIDS Institute, State Key Laboratory of Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Li Liu
- AIDS Institute, State Key Laboratory of Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jianping Chen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Shenzhen Institute of Research and Innovation, University of Hong Kong, Shenzhen, China
| |
Collapse
|
2
|
Fang B, Yoo G, Lee PJ, Qiu Y, Lee SH, Lee JS, Yoo HM, Cho N. Network Pharmacology-Based Strategy to Investigate the Anti-Breast Cancer Mechanisms of Spatholobus suberectus Dunn. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221077820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Spatholobus suberectus Dunn (SSD) possesses potential antitumor activity; however, the mechanism underlying its anti-proliferative effect on breast cancer is unclear. In this study, we explored potential SSD targets for breast cancer treatment through a network pharmacology approach. First, by integrating multiple databases, a total of 16 potential bioactive compounds and 252 targets were screened. Differentially expressed genes (DEGs) were screened by analyzing breast cancer gene chip data from The Cancer Genome Atlas and Gene Expression Omnibus databases. By overlapping drug targets and DEGs, 33 common targets were found; their functions were further analyzed with Gene Ontology and KEGG analysis. A network of 16 compounds and 33 common targets was constructed, from which 10 hub targets were identified using CytoHubba. Based on the KEGG result and network analysis, the 33 common targets were mainly enriched in the peroxisome proliferator-activated receptor (PPAR) signaling pathway and PPARγ was identified as the potential target of SSD. Moreover, the 10 hub targets were correlated with prognosis and immune infiltration in breast cancer via bioinformatic analysis. Finally, molecular docking and experiments in vitro further verified the targeting ability and anti-breast cancer activity of SSD. SSD is promising in the treatment of breast cancer; PPARγ may be its potential therapeutic target.
Collapse
Affiliation(s)
- Bo Fang
- Chonnam National University, Gwangju 61186, Korea
- Wenzhou Medical University, Wenzhou 325035, China
| | - Guijae Yoo
- Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-Gun, Jeollabuk-do, Republic of Korea
| | | | - Yinda Qiu
- Chonnam National University, Gwangju 61186, Korea
| | - Sung Hoon Lee
- Chung-Ang University, Seoul 06974, Republic of Korea
| | - Ji Shin Lee
- Chonnam National University Medical School, Gwangju 61469, Korea
| | - Hee Min Yoo
- Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Korea
| | - Namki Cho
- Chonnam National University, Gwangju 61186, Korea
| |
Collapse
|
3
|
The Antitriple Negative Breast cancer Efficacy of Spatholobus suberectus Dunn on ROS-Induced Noncanonical Inflammasome Pyroptotic Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5187569. [PMID: 34659633 PMCID: PMC8514942 DOI: 10.1155/2021/5187569] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 12/24/2022]
Abstract
Breast cancer (BCa) is the leading cause of women's death worldwide; among them, triple-negative breast cancer (TNBC) is one of the most troublesome subtypes with easy recurrence and great aggressive properties. Spatholobus suberectus Dunn has been used in the clinic of Chinese society for hundreds of years. Shreds of evidence showed that Spatholobus suberectus Dunn has a favorable outcome in the management of cancer. However, the anti-TNBC efficacy of Spatholobus suberectus Dunn percolation extract (SSP) and its underlying mechanisms have not been fully elucidated. Hence, the present study is aimed at evaluating the anti-TNBC potential of SSP both in vitro and in vivo, through the cell viability, morphological analysis of MDA-MB-231, LDH release assay, ROS assay, and the tests of GSH aborted pyroptotic noninflammasome signaling pathway. Survival analysis using the KM Plotter and TNM plot database exhibited the inhibition of transcription levels of caspase-4 and 9 related to low relapse-free survival in patients with BCa. Based on the findings, SSP possesses anti-TNBC efficacy that relies on ROS-induced noncanonical inflammasome pyroptosis in cancer cells. In this study, our preclinical evidence is complementary to the preceding clinic of Chinese society; studies on the active principles of SPP remain underway in our laboratory.
Collapse
|
4
|
Oral Administration of Liquiritigenin Confers Protection from Atopic Dermatitis through the Inhibition of T Cell Activation. Biomolecules 2020; 10:biom10050786. [PMID: 32438694 PMCID: PMC7277419 DOI: 10.3390/biom10050786] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/15/2020] [Accepted: 05/16/2020] [Indexed: 12/12/2022] Open
Abstract
While liquiritigenin, isolated from Spatholobus suberectus Dunn, is known to possess anti-inflammatory activities, it still remains to be known whether liquiritigenin has a suppressive effect on T cell activation and T cell-mediated disease. Here, we used Jurkat T cells to explore an underlying mechanism of pre-treatment with liquiritigenin in activated T cell in vitro and used atopic dermatitis (AD) in vivo to confirm it. We found liquiritigenin blocks IL-2 and CD69 expression from activated T cells by PMA/A23187 or anti-CD3/CD28 antibodies. The expressions of surface molecules, including CD40L and CD25, were also reduced in activated T cells pre-treated with liquiritigenin. Western blot analysis indicated repressive effects by liquiritigenin are involved in NFκB and MAPK pathways. To assess the effects of liquiritigenin in vivo, an AD model was applied as T cell-mediated disease. Oral administration of liquiritigenin attenuates AD manifestations, including ear thickness, IgE level, and thicknesses of dermis and epidermis. Systemic protections by liquiritigenin were observed to be declined in size and weight of draining lymph nodes (dLNs) and expressions of effector cytokines from CD4+ T cells in dLNs. These results suggest liquiritigenin has an anti-atopic effect via control of T cell activation and exhibits therapeutic potential for T cell-mediated disorders.
Collapse
|
5
|
Inami K, Asada Y, Harada T, Okayama Y, Usui N, Mochizuki M. Antimutagenic components in Spatholobus suberectus Dunn against N-methyl- N-nitrosourea. Genes Environ 2019; 41:22. [PMID: 31890055 PMCID: PMC6907206 DOI: 10.1186/s41021-019-0137-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 11/25/2019] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND An extract from Spatholobus suberectus (S. suberectus) Dunn has been reported to show potent antimutagenic effects against N-alkyl-N-nitrosoureas in umu screening. The aim of this study was to identify the antimutagenic components from extracts of S. suberectus against N-methyl-N-nitrosourea (MNU) in the Ames assay with Salmonella typhimurium strain TA1535 and to elucidate the antimutagenic mechanism of the flavonoids. RESULTS From the ethyl acetate fraction obtained from fractionation of the methanol extract of S. suberectus Dunn, medicarpin, formononetin and isoliquiritigenin were successfully isolated through a combination of normal- and reversed-phase chromatography. Genistein and naringenin, which were already reported to be contained in S. suberectus Dunn, were also tested for their antimutagenicity towards MNU, along with formononetin, isoliquiritigenin and medicarpin. Our results demonstrated that genistein, isoliquiritigenin, medicarpin and naringenin were antimutagenic against MNU without showing cytotoxicity. MNU is reported to cause not only DNA alkylation but also induce reactive oxygen species. The hydroxyl radical scavenging capacity of the flavonoids was correlated with the antimutagenic capacity, indicating that the hydroxyl radical scavenging activity was involved in their antimutagenicity towards MNU. CONCLUSIONS It is important to prevent DNA damage by N-nitrosamines for cancer chemoprevention. Genistein, isoliquiritigenin, medicarpin and naringenin were demonstrated to possess an antigenotoxic effects against carcinogenic MNU due to their radical scavenging activity.
Collapse
Affiliation(s)
- Keiko Inami
- Faculty of Pharmaceutical Sciences, Sanyo-onoda City University, Daigakudo-ri 1-1-1, Sanyo-onoda-shi, Yamaguchi, 756-0884 Japan
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Noda-shi, Chiba, 278-8510 Japan
| | - Yoshihisa Asada
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Noda-shi, Chiba, 278-8510 Japan
| | - Takumi Harada
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Noda-shi, Chiba, 278-8510 Japan
| | - Yuta Okayama
- Faculty of Pharmaceutical Sciences, Sanyo-onoda City University, Daigakudo-ri 1-1-1, Sanyo-onoda-shi, Yamaguchi, 756-0884 Japan
| | - Noriko Usui
- Faculty of Pharmaceutical Sciences, Sanyo-onoda City University, Daigakudo-ri 1-1-1, Sanyo-onoda-shi, Yamaguchi, 756-0884 Japan
| | - Masataka Mochizuki
- Faculty of Pharmaceutical Sciences, Sanyo-onoda City University, Daigakudo-ri 1-1-1, Sanyo-onoda-shi, Yamaguchi, 756-0884 Japan
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Noda-shi, Chiba, 278-8510 Japan
| |
Collapse
|
6
|
Liu XY, Zhang YB, Yang XW, Yang YF, Xu W, Zhao W, Peng KF, Gong Y, Liu NF, Zhang P. Anti-Inflammatory Activity of Some Characteristic Constituents from the Vine Stems of Spatholobus suberectus. Molecules 2019; 24:molecules24203750. [PMID: 31627460 PMCID: PMC6832230 DOI: 10.3390/molecules24203750] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 10/13/2019] [Accepted: 10/14/2019] [Indexed: 12/13/2022] Open
Abstract
The dried vine stems of Spatholobus suberectus are commonly used in traditional Chinese medicine for treating gynecological and cardiovascular diseases. In this study, five new compounds named spasuberol A (2), homovanillyl-4-oxo-nonanoate (5), spasuberol C (6), spasuberoside A (14), and spasuberoside B (15), together with ten known compounds (1, 3, 4, 7–13), were isolated from the dried vine stems of S. suberectus. Their chemical structures were analyzed using spectroscopic assays. This is the first study interpreting the detailed structural information of 4. The anti-inflammatory activity of these compounds was evaluated by reducing nitric oxide overproduction in RAW264.7 macrophages stimulated by lipopolysaccharide. Compounds 1 and 8–10 showed strong inhibitory activity with half maximal inhibitory concentration (IC50) values of 5.69, 16.34, 16.87, and 6.78 μM, respectively, exhibiting higher activity than the positive drug l-N6-(1-iminoethyl)-lysine (l-NIL) with an IC50 value of 19.08 μM. The IC50 values of inhibitory activity of compounds 2 and 4–6 were 46.26, 40.05, 45.87, and 28.29 μM respectively, which were lower than l-NIL, but better than that of positive drug indomethacin with an IC50 value of 55.44 μM. Quantitative real-time polymerase chain reaction analysis revealed that assayed compounds with good anti-inflammatory activity, such as 1, 6, 9, and 10 at different concentrations, can reduce the messenger RNA (mRNA) expression of some pro-inflammatory cytokines such as tumor necrosis factor α (TNF-α), nitric oxide synthase (iNOS), and cyclooxygenase 2 (COX-2). The anti-inflammatory activity and the possible mechanism of the compounds mentioned in this paper were studied preliminarily.
Collapse
Affiliation(s)
- Xiao-Yan Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University Health Science Center, Peking University, No. 38, Xueyuan Road, Haidian District, Beijing 100191, China.
| | - You-Bo Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University Health Science Center, Peking University, No. 38, Xueyuan Road, Haidian District, Beijing 100191, China.
| | - Xiu-Wei Yang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University Health Science Center, Peking University, No. 38, Xueyuan Road, Haidian District, Beijing 100191, China.
| | - Yan-Fang Yang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University Health Science Center, Peking University, No. 38, Xueyuan Road, Haidian District, Beijing 100191, China.
| | - Wei Xu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University Health Science Center, Peking University, No. 38, Xueyuan Road, Haidian District, Beijing 100191, China.
| | - Wei Zhao
- Zhuzhou Qianjin Pharmaceutical Co., Ltd., Zhuzhou 412000, China.
| | - Kai-Feng Peng
- Zhuzhou Qianjin Pharmaceutical Co., Ltd., Zhuzhou 412000, China.
| | - Yun Gong
- Zhuzhou Qianjin Pharmaceutical Co., Ltd., Zhuzhou 412000, China.
| | - Ni-Fu Liu
- Zhuzhou Qianjin Pharmaceutical Co., Ltd., Zhuzhou 412000, China.
| | - Peng Zhang
- Zhuzhou Qianjin Pharmaceutical Co., Ltd., Zhuzhou 412000, China.
| |
Collapse
|
7
|
Chen H, Zhao X, Lv T, Qiu X, Luo L, Zhang M, Yang H, Chang X, Li P, Wu C, Xie D, Qian Y, Yang C. Compounds from the root of Pueraria peduncularis (Grah. ex Benth.) Benth. and their antimicrobial effects. PEST MANAGEMENT SCIENCE 2019; 75:2765-2769. [PMID: 30801938 DOI: 10.1002/ps.5387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 02/18/2019] [Accepted: 02/21/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Pueraria peduncularis belongs to the genus Pueraria DC, and has a wide range of medical and agricultural activities. Previous studies have shown that P. peduncularis extracts have broad bioactivities against phytopathogens. In this paper, we systematically studied the fungicidal activity of root methanol extracts and further isolated the active compounds. RESULTS The root methanol extract inhibited the mycelial growth of the five tested phytopathogens to different degrees. Among these phytopathogens, the inhibitory effect was greatest against R. solani, with an EC50 value of 324.72 mg L-1 . Eight compounds were subsequently isolated and identified from P. peduncularis. Among them, puercarpan A and medicarpin showed strong fungicidal activity, with MIC values against Rhizoctonia solani of 1.6 and 6.25 mg L-1 , respectively. Puercarpan A is a new compound, and its structure was established as (6aR,6bS,11aR)-6b-hydroxy-3-methoxypterocarpan-10-ene-7-one. CONCLUSION The P. peduncularis extracts exhibit high antimicrobial activity against R. solani and have great potential value of P. peduncularis as a fungicide. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Huabao Chen
- Department of Plant Protection, College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Xiaomin Zhao
- Department of Plant Protection, College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Tianxing Lv
- Department of Plant Protection, College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Xiaoyan Qiu
- Department of Plant Protection, College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Liya Luo
- Department of Plant Protection, College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Min Zhang
- Department of Plant Protection, College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Hui Yang
- Department of Plant Protection, College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Xiaoli Chang
- Department of Plant Protection, College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Peili Li
- Department of Plant Protection, College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - ChuanLei Wu
- Department of Plant Protection, College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Deshan Xie
- Department of Plant Protection, College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Yong Qian
- Shanghai Standard Technology Co., Ltd., Shanghai, China
| | - Chunping Yang
- Department of Plant Protection, College of Agronomy, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
8
|
Peng F, Zhu H, Meng CW, Ren YR, Dai O, Xiong L. New Isoflavanes from Spatholobus suberectus and Their Cytotoxicity against Human Breast Cancer Cell Lines. Molecules 2019; 24:molecules24183218. [PMID: 31487934 PMCID: PMC6766798 DOI: 10.3390/molecules24183218] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 08/30/2019] [Accepted: 09/04/2019] [Indexed: 12/30/2022] Open
Abstract
The rattans of Spatholobus suberectus Dunn are a traditional Chinese medicine activating blood circulation and removing stasis. They have often been used for the traditional Chinese medicinal treatment of breast cancer in modern China. In this study, four novel isoflavanes (1–3 and 5) and four known analogues (4 and 6–8) were isolated from an ethanolic extract of the rattans of S. suberectus. Their structures were elucidated by extensive spectroscopic analyses and electronic circular dichroism studies. MCF-7 and MDA-MB-231 human breast cancer cell lines were used to evaluate the cytotoxic effects of the isolates. Interestingly, compounds 1 and 2 only inhibited the proliferation of MCF-7 cells, while compound 6 showed a selective cytotoxicity against MDA-MB-231 cells. However, compound 4 had significant cytotoxicity against both MCF-7 and MDA-MB-231 cell lines.
Collapse
Affiliation(s)
- Fu Peng
- West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Huan Zhu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
- Institute of Innovative Medicine Ingredients of Southwest Specialty Medicinal Materials, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Chun-Wang Meng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
- Institute of Innovative Medicine Ingredients of Southwest Specialty Medicinal Materials, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yan-Rui Ren
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Ou Dai
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
- Institute of Innovative Medicine Ingredients of Southwest Specialty Medicinal Materials, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Liang Xiong
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
- Institute of Innovative Medicine Ingredients of Southwest Specialty Medicinal Materials, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
9
|
Kim H, Yi SS, Lee HK, Heo TH, Park SK, Jun HS, Song KD, Kim SJ. Antiproliferative Effect of Vine Stem Extract from Spatholobus Suberectus Dunn on Rat C6 Glioma Cells Through Regulation of ROS, Mitochondrial Depolarization, and P21 Protein Expression. Nutr Cancer 2018; 70:605-619. [PMID: 29668336 DOI: 10.1080/01635581.2018.1460673] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The vine stem of Spatholobus suberectus Dunn (SS) is used as a traditional herbal medicine in China. Chinese herbal medicines are well known as natural bioactive compounds that can be used as new medicines, and their antioxidant and anticancer effects have also been reported. This study aimed to examine the anticancer effect of a high-pressure hot-water SS extract on rat C6 glioma cells. The SS extract effectively suppressed the viability and proliferation of C6 glioma cells through an antioxidant effect. Reactive oxygen species (ROS) levels in cancer cells are higher than that in normal cells. If the ROS level falls below that required for the growth of cancer cells, their rapid proliferation and growth can be suppressed. We also measured the induction of mitochondrial membrane depolarization and cell cycle arrest effect caused by the SS extract in C6 glioma cells through a FACS analysis. In addition, we observed an increase in STAT3, p53, E2F1, and p21 mRNA expression and a decrease in Bcl-2 mRNA expression by quantitative PCR. An increase in p21 protein expression of over 83% was observed through western blot analysis. All these data support the fact that the high-pressure hot-water SS extract has the potential to be used for glioma treatment.
Collapse
Affiliation(s)
- Hyungkuen Kim
- a Department of Biotechnology , Hoseo University , Asan , Chungnam , Republic of Korea
| | - Sun Shin Yi
- b Department of Biomedical Laboratory Science , College of Biomedical Sciences, Soonchunhyang University , Asan , Chungnam , Republic of Korea
| | - Hak-Kyo Lee
- c Department of Animal Biotechnology , Chonbuk National University , Jeonju , Jeonbuk , Republic of Korea
| | - Tae-Hwe Heo
- d Lab of Immunology, Integrated Research Institute of Pharmaceutical Sciences, College of Pharmacy, The Catholic University of Korea , Bucheon , Gyeonggi , Republic of Korea
| | - Sang-Kyu Park
- e Department of Medical Biotechnology , College of Medical Sciences, Soonchunhyang University , Asan , Chungnam , Republic of Korea
| | - Hyun Sik Jun
- f Department of Biotechnology and Bioinformatics , College of Science and Technology, Korea University , Sejong , Republic of Korea
| | - Ki Duk Song
- c Department of Animal Biotechnology , Chonbuk National University , Jeonju , Jeonbuk , Republic of Korea
| | - Sung-Jo Kim
- a Department of Biotechnology , Hoseo University , Asan , Chungnam , Republic of Korea
| |
Collapse
|
10
|
Zheng C, Wang L, Han T, Xin H, Jiang Y, Pan L, Jia X, Qin L. Pruinosanones A-C, anti-inflammatory isoflavone derivatives from Caragana pruinosa. Sci Rep 2016; 6:31743. [PMID: 27545283 PMCID: PMC4992842 DOI: 10.1038/srep31743] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 07/26/2016] [Indexed: 01/09/2023] Open
Abstract
Pruinosanone A (1), a novel spirochromone, was isolated from the roots of Caragana pruinosa. Two biogenetically related isoflavone intermediates, pruinosanones B and C (2 and 3), were also isolated, together with five known analogs identified as 3-hydroxy-9-methoxypterocarpan (4), 7,2'-dihydroxy-4'-methoxyisoflavanol (5), retusin-8-methylether (6), 7,2'-dihydroxy-8,4'-dimethoxy isoflavone (7) and 7,3'-dihydroxy-8,4'-dimethoxy isoflavone (8). The structures of 1-3 were elucidated based on extensive spectroscopic methods. Notably, 1 is the first example of a spirochromone possessing an unprecedented pentacyclic skeleton containing a spiro[benzo[d][1,3]dioxole-2,3'-chroman]-4'-one motif, which was confirmed by X-ray diffraction analysis. A plausible biosynthetic pathway for 1 was also proposed. Compounds 1-8 were tested for their ability to inhibit nitric oxide (NO) production in LPS-induced RAW 264.7 macrophages, and compounds 1-3 were the most potent inhibitors of NO production, with IC50 values of 1.96, 1.93 and 1.58 μM, respectively. A structure-activity relationship analysis revealed that the fused 2-isopropenyl-2,3-dihydrofuran moiety plays a vital role in the potency of these compounds. Moreover, 1 was found to significantly inhibit inducible nitric oxide synthase (iNOS) protein expression, which accounts for the potent inhibition of NO production by this spirochromone.
Collapse
Affiliation(s)
- Chengjian Zheng
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Liang Wang
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Ting Han
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Hailiang Xin
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Yiping Jiang
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Lan Pan
- Xinjiang Institute of Chinese Materia Medica and Ethnodrug, Urumqi 830002, China
| | - Xiaoguang Jia
- Xinjiang Institute of Chinese Materia Medica and Ethnodrug, Urumqi 830002, China
| | - Luping Qin
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
11
|
Chiang CM, Ding HY, Tsai YT, Chang TS. Production of Two Novel Methoxy-Isoflavones from Biotransformation of 8-Hydroxydaidzein by Recombinant Escherichia coli Expressing O-Methyltransferase SpOMT2884 from Streptomyces peucetius. Int J Mol Sci 2015; 16:27816-23. [PMID: 26610478 PMCID: PMC4661928 DOI: 10.3390/ijms161126070] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 11/17/2015] [Accepted: 11/18/2015] [Indexed: 01/17/2023] Open
Abstract
Biotransformation of 8-hydroxydaidzein by recombinant Escherichia coli expressing O-methyltransferase (OMT) SpOMT2884 from Streptomyces peucetius was investigated. Two metabolites were isolated and identified as 7,4′-dihydroxy-8-methoxy-isoflavone (1) and 8,4′-dihydroxy-7-methoxy-isoflavone (2), based on mass, 1H-nuclear magnetic resonance (NMR) and 13C-NMR spectrophotometric analysis. The maximum production yields of compound (1) and (2) in a 5-L fermenter were 9.3 mg/L and 6.0 mg/L, respectively. The two methoxy-isoflavones showed dose-dependent inhibitory effects on melanogenesis in cultured B16 melanoma cells under non-toxic conditions. Among the effects, compound (1) decreased melanogenesis to 63.5% of the control at 25 μM. This is the first report on the 8-O-methylation activity of OMT toward isoflavones. In addition, the present study also first identified compound (1) with potent melanogenesis inhibitory activity.
Collapse
Affiliation(s)
- Chien-Min Chiang
- Department of Biotechnology, Chia Nan University of Pharmacy & Science, No. 60, Sec. 1, Erh-Jen Rd., Jen-Te District, Tainan 71710, Taiwan.
| | - Hsiou-Yu Ding
- Department of Cosmetics Science, Chia Nan University of Pharmacy & Science, No. 60, Sec. 1, Erh-Jen Rd., Jen-Te District, Tainan 71710, Taiwan.
| | - Ya-Ting Tsai
- Department of Biological Sciences and Technology, National University of Tainan, No. 33, Sec. 2, Shu-Lin St., Tainan 70005, Taiwan.
| | - Te-Sheng Chang
- Department of Biological Sciences and Technology, National University of Tainan, No. 33, Sec. 2, Shu-Lin St., Tainan 70005, Taiwan.
| |
Collapse
|
12
|
Gaascht F, Dicato M, Diederich M. Venus Flytrap (Dionaea muscipula Solander ex Ellis) Contains Powerful Compounds that Prevent and Cure Cancer. Front Oncol 2013; 3:202. [PMID: 23971004 PMCID: PMC3747514 DOI: 10.3389/fonc.2013.00202] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 07/24/2013] [Indexed: 12/11/2022] Open
Abstract
Chemoprevention uses natural or synthetic molecules without toxic effects to prevent and/or block emergence and development of diseases including cancer. Many of these natural molecules modulate mitogenic signals involved in cell survival, apoptosis, cell cycle regulation, angiogenesis, or on processes involved in the development of metastases occur naturally, especially in fruits and vegetables bur also in non-comestible plants. Carnivorous plants including the Venus flytrap (Dionaea muscipula Solander ex Ellis) are much less investigated, but appear to contain a wealth of potent bioactive secondary metabolites. Aim of this review is to give insight into molecular mechanisms triggered by compounds isolated from these interesting plants with either therapeutic or chemopreventive potential.
Collapse
Affiliation(s)
- François Gaascht
- Laboratory for Molecular and Cellular Biology of Cancer (LBMCC), Hôpital Kirchberg, Luxembourg, Luxembourg
| | - Mario Dicato
- Laboratory for Molecular and Cellular Biology of Cancer (LBMCC), Hôpital Kirchberg, Luxembourg, Luxembourg
| | - Marc Diederich
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, South Korea
| |
Collapse
|