1
|
Chen KQ, Wang SZ, Lei HB, Liu X. Ophiopogonin D: review of pharmacological activity. Front Pharmacol 2024; 15:1401627. [PMID: 39101149 PMCID: PMC11295246 DOI: 10.3389/fphar.2024.1401627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/28/2024] [Indexed: 08/06/2024] Open
Abstract
Background Ophiopogon D is an important natural organic compound in Ophiopogon japonicus, which often has significant biological activity. Purpose The purpose of this review is to systemically summarize and discuss the pharmacological activity and underlying mechanisms of OP-D in recent years. Method PubMed and Web of Science were searched with the keywords:"Ophiopogon japonicus", "Ophiopogon D" "pharmacology", and "pharmacokinetics". There was no restriction on the publication year, and the last search was conducted on 1 Jan 2024. Results Emerging evidence suggests that OP-D possess numerous pharmacological activities, including bone protection, cardiovascular protection, immune regulation, anti-cancer, anti-atherosclerosis, anti-inflammatory and anti-NAFLD. Conclusion OP-D has a potential value in the prevention and treatment of many diseases. We hope that this review will contribute to therapeutic development and future studies of OP-D.
Collapse
Affiliation(s)
- Ke-qian Chen
- Department of Clinical Pharmacy, Xiangtan Central Hospital, Xiangtan, China
| | - Shu-zhi Wang
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, Hengyang Medical School, University of South China, Hengyang, China
| | - Hai-bo Lei
- Department of Clinical Pharmacy, Xiangtan Central Hospital, Xiangtan, China
| | - Xiang Liu
- Department of Clinical Pharmacy, Xiangtan Central Hospital, Xiangtan, China
| |
Collapse
|
2
|
Huang R, Guo L, Gao M, Li J, Xiang S. Research Trends and Regulation of CCL5 in Prostate Cancer. Onco Targets Ther 2021; 14:1417-1427. [PMID: 33664576 PMCID: PMC7921632 DOI: 10.2147/ott.s279189] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 01/20/2021] [Indexed: 12/11/2022] Open
Abstract
Prostate cancer (PCa) is considered as the most common cancer of urologic neoplasms, and its development and prognosis are associated with many factors. Chemokine receptor signaling combine with advances in advanced clinicopathological characteristics have provided new insights into the molecular landscape of prostate cancer. Chemokine (C-C motif) ligand 5 (CCL5) is an important member of the CC subfamily of chemokines. The expression of chemokine CCL5 is positively correlated with poor prognostic features in patients with PCa. Current study suggested that CCL5/CCR5 axis plays a significant role in the proliferation, metastasis, angiogenesis, drug resistance of prostate cancer cells and promotes self-renewal of prostate cancer stem cells (PCSCs). Due to the major domination in CCL5 by prostate cancer and the high cancer-specific mortality with prostate cancer, research on the CCL5/CCR5 axis effective antagonists is widespread application. However, challenges for precision oncology of CCL5/CCR5 axis and effective antagonists in CRPC remain. Herein, we summarized the crucial role of CCL5 in promoting the development of PCa and discussed the antitumor application of the antagonists of CCL5/CCR5 axis.
Collapse
Affiliation(s)
- Renlun Huang
- Department of Urology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Lang Guo
- Department of Urology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Menghan Gao
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Jing Li
- Department of Urology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Songtao Xiang
- Department of Urology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
3
|
Yu H, Wang H, Yin Y, Wang Z. Liriopesides B from Liriope spicata var. prolifera inhibits metastasis and induces apoptosis in A2780 human ovarian cancer cells. Mol Med Rep 2020; 22:1747-1758. [PMID: 32582970 PMCID: PMC7411299 DOI: 10.3892/mmr.2020.11256] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 05/12/2020] [Indexed: 12/02/2022] Open
Abstract
Ovarian cancer is the most frequent cause of death among gynecological cancers. In the present study, the anti-cancer effect of liriopesides B, a steroidal saponin from Liriope spicata var. prolifera, against A2780 cells was investigated. Transwell chambers were adopted to assess its effect on cell invasion and chemotaxis abilities. Flow cytometry was used to analyze the cell cycle and apoptosis. Reverse transcription-quantitative PCR was employed to examine gene expression levels. Western blot analysis was performed to detect protein expression levels. Liriopesides B inhibited the invasion and chemotactic movement ability of A2780 cells in a dose-dependent manner. Furthermore, liriopesides B caused cell cycle arrest in A2780 cells at the G1 phase following incubation for 24, 48 and 72 h. Hoechst 33258 staining indicated that, following incubation for 48 h, liriopesides B induced cell apoptosis in a dose-dependent manner. Flow cytometry verified that liriopesides B induced apoptosis in A2780 cells and induced late apoptosis in a dose-dependent manner. Furthermore, liriopesides B significantly increased the mRNA expression levels of E-CADHERIN, p21 and p27 and decreased the gene expression levels of BCL-2, which was consistent with its protein expression levels. In conclusion, liriopesides B possess anti-cancer properties, including inhibition of metastasis-associated behaviors, cell cycle arrest and induction of apoptosis. Therefore, liriopesides B may be considered as a candidate drug against ovarian cancer.
Collapse
Affiliation(s)
- Haizhong Yu
- College of Life Sciences, Chongqing University, Chongqing 400044, P.R. China
| | - Haiyan Wang
- School of Food Science and Technology, Hubei University of Arts and Science, Xiangyang, Hubei 441053, P.R. China
| | - Youping Yin
- College of Life Sciences, Chongqing University, Chongqing 400044, P.R. China
| | - Zhongkang Wang
- College of Life Sciences, Chongqing University, Chongqing 400044, P.R. China
| |
Collapse
|
4
|
Yu X, Wei D, Gao Y, Du H, Yu B, Li R, Qian C, Luo X, Yuan S, Wang J, Sun L. Synergistic combination of DT-13 and Topotecan inhibits aerobic glycolysis in human gastric carcinoma BGC-823 cells via NM IIA/EGFR/HK II axis. J Cell Mol Med 2019; 23:6622-6634. [PMID: 31397978 PMCID: PMC6787456 DOI: 10.1111/jcmm.14523] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 12/14/2022] Open
Abstract
DT-13 combined with topotecan (TPT) showed stronger antitumour effects in mice subcutaneous xenograft model compared with their individual effects in our previous research. Here, we further observed the synergistically effect in mice orthotopic xenograft model. Metabolomics analysis showed DT-13 combined with TPT alleviated metabolic disorders induced by tumour and synergistically inhibited the activity of the aerobic glycolysis-related enzymes in vivo and in vitro. Mechanistic studies revealed that the combination treatment promoted epidermal growth factor receptor (EGFR) degradation through non-muscle myosin IIA (NM IIA)-induced endocytosis of EGFR, further inhibited the activity of hexokinase II (HK II), and eventually promoted the aerobic glycolysis inhibition activity more efficiently compared with TPT or DT-13 monotherapy. The combination therapy also inhibited the specific binding of HK II to mitochondria. When using the NM II inhibitor (-)002Dblebbistatin or MYH-9 shRNA, the synergistic inhibition effect of DT-13 and TPT on aerobic glycolysis was eliminated in BGC-823 cells. Immunohistochemical analysis revealed selective up-regulation of NM IIA while specific down-regulation of p-CREB, EGFR, and HK II by the combination therapy. Collectively, these findings suggested that this regimen has significant clinical implications, warranted further investigation.
Collapse
Affiliation(s)
- Xiao‐Wen Yu
- Jiangsu Key Laboratory for Drug ScreeningChina Pharmaceutical UniversityNanjingChina
- Nanjing Key Laboratory of PediatricsChildren's Hospital of Nanjing Medical UniversityNanjingChina
| | - Dandan Wei
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, State Key Laboratory Cultivation Base for TCM Quality and EfficacyNanjing University of Chinese MedicineNanjingChina
| | - Ying‐Sheng Gao
- Jiangsu Center for Pharmacodynamics Research and EvaluationChina Pharmaceutical UniversityNanjingChina
| | - Hong‐Zhi Du
- School of PharmacyHubei University of Chinese MedicineWuhanChina
| | - Bo‐Yang Yu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCMChina Pharmaceutical UniversityNanjingChina
| | - Rui‐Ming Li
- Tasly Research InstituteTianjin Tasly Holding Group Co. Ltd.TianjinChina
| | - Chang‐Min Qian
- Tasly Research InstituteTianjin Tasly Holding Group Co. Ltd.TianjinChina
| | - Xue‐Jun Luo
- Tasly Research InstituteTianjin Tasly Holding Group Co. Ltd.TianjinChina
| | - Sheng‐Tao Yuan
- Jiangsu Center for Pharmacodynamics Research and EvaluationChina Pharmaceutical UniversityNanjingChina
| | - Jun‐Song Wang
- Center for Molecular MetabolismNanjing University of Science & TechnologyNanjingChina
| | - Li Sun
- Jiangsu Key Laboratory for Drug ScreeningChina Pharmaceutical UniversityNanjingChina
| |
Collapse
|
5
|
Wang Z, Wang Y, Zhu S, Liu Y, Peng X, Zhang S, Zhang Z, Qiu Y, Jin M, Wang R, Zhong Y, Kong D. DT-13 Inhibits Proliferation and Metastasis of Human Prostate Cancer Cells Through Blocking PI3K/Akt Pathway. Front Pharmacol 2018; 9:1450. [PMID: 30581390 PMCID: PMC6292965 DOI: 10.3389/fphar.2018.01450] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 11/26/2018] [Indexed: 12/24/2022] Open
Abstract
DT-13, a saponin monomer 13 from the dwarf lilyturf tuber, was reported to exhibit anti-inflammatory, hepatoprotective, cardioprotective as well as antitumor activities in a number of tumor cells. Prostate cancer is the second leading cause of cancer death in males, discovery of novel antitumor drug for therapy of prostate cancer is expected. Aiming to evaluate whether DT-13 could become a candidate to treat prostate cancer, we recently investigated the antitumor effect of DT-13 on human prostate cancer cells and the underlying mechanism. DT-13 was found to effectively inhibit proliferation and metastasis of prostate cancer PC3 and DU145 cell lines in a dose-dependent manner. Treatment by DT-13 resulted in a mitochondria-mediated apoptosis, which was accompanied by the chromatin condensation and nuclear shrinkage in the prostate cancer cells. Moreover, DT-13 caused remarkable upregulation of Bax, Bad, Cytochrome C, cleaved -caspase 3, -caspase 9 and -PARP, in contrast to the downregulation of Bcl-2. Nevertheless, no obvious change in intracellular ROS level was observed after DT-13 treatment. We further demonstrated that DT-13 could inhibit PC3 cell metastasis in which suppression of Integrinβ1 and MMP2/9 might be involved. Western blot analysis indicated DT-13 significantly decreased the phosphorylation of PDK1, Akt, mTOR as well as p70S6K, suggesting the pro-apoptotic and anti-metastatic effects of DT-13 on prostate cancer cells might be attributed to the blockade of PI3K/Akt pathway. Collectively, our findings suggest DT-13 is worthy of further investigation as a drug candidate for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Zhengming Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Yingying Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Shan Zhu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Yao Liu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Xin Peng
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Shaolu Zhang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Zhe Zhang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Yuling Qiu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Meihua Jin
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Ran Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Yuxu Zhong
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Dexin Kong
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
| |
Collapse
|
6
|
Inhibition of the CCL5/CCR5 Axis against the Progression of Gastric Cancer. Int J Mol Sci 2018; 19:ijms19051477. [PMID: 29772686 PMCID: PMC5983686 DOI: 10.3390/ijms19051477] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 05/11/2018] [Accepted: 05/14/2018] [Indexed: 12/14/2022] Open
Abstract
Despite the progress made in molecular and clinical research, patients with advanced-stage gastric cancer (GC) have a bad prognosis and very low survival rates. Furthermore, it is challenging to find the complex molecular mechanisms that are involved in the development of GC, its progression, and its resistance to therapy. The interactions of chemokines, also known as chemotactic cytokines, with their receptors regulate immune and inflammatory responses. However, updated research demonstrates that cancer cells subvert the normal chemokine role, transforming them into fundamental constituents of the tumor microenvironment (TME) with tumor-promoting effects. C-C chemokine ligand 5 (CCL5) is a chemotactic cytokine, and its expression and secretion are regulated in T cells. C-C chemokine receptor type 5 (CCR5) is expressed in T cells, macrophages, other leukocytes, and certain types of cancer cells. The interaction between CCL5 and CCR5 plays an active role in recruiting leukocytes into target sites. This review summarizes recent information on the role of the CCL5 chemokine and its receptor CCR5 in GC cell proliferation, metastasis formation, and in the building of an immunosuppressive TME. Moreover, it highlights the development of new therapeutic strategies to inhibit the CCL5/CCR5 axis in different ways and their possible clinical relevance in the treatment of GC.
Collapse
|
7
|
Wang H, Yu H, Sun Y, Zhao H, Guo Z, Yu B. Liriopesides B inhibited cell growth and decreased CA125 level in human ovarian cancer A2780 cells. Nat Prod Res 2017; 31:2198-2202. [PMID: 28449586 DOI: 10.1080/14786419.2017.1320788] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
To study the effect of liriopesides B on cell growth curve, cell doubling time, the activity of tumour marker CA125 and alkaline phosphatase (AKP) in human ovarian cancer A2780 cells. Both cell growth curve and doubling time were studied by MTT assay, CA125 level and AKP activity were determined by respective kits. Results showed that liriopesides B could shift down the A2780 cells growth curve in a dose-time-dependent manner and inhibit the proliferation in A2780 cells with the maximum inhibitory rate 94.462% at 120 h, the doubling time was prolonged too. CA125 level was decreased in a dose-dependent way as well as AKP activity. Liriopesides B exhibited potential anticancer activity against human ovarian cancer A2780 cells.
Collapse
Affiliation(s)
- Haiyan Wang
- a Department of Chemical Engineering and Food Science , Hubei University of Arts and Science , Hubei , China
| | - Haizhong Yu
- a Department of Chemical Engineering and Food Science , Hubei University of Arts and Science , Hubei , China
| | - Yonglin Sun
- a Department of Chemical Engineering and Food Science , Hubei University of Arts and Science , Hubei , China
| | - Huijun Zhao
- a Department of Chemical Engineering and Food Science , Hubei University of Arts and Science , Hubei , China
| | - Zhuang Guo
- a Department of Chemical Engineering and Food Science , Hubei University of Arts and Science , Hubei , China
| | - Bo Yu
- a Department of Chemical Engineering and Food Science , Hubei University of Arts and Science , Hubei , China
| |
Collapse
|
8
|
Yu XW, Lin S, Du HZ, Zhao RP, Feng SY, Yu BY, Zhang LY, Li RM, Qian CM, Luo XJ, Yuan ST, Sun L. Synergistic combination of DT-13 and topotecan inhibits human gastric cancer via myosin IIA-induced endocytosis of EGF receptor in vitro and in vivo. Oncotarget 2016; 7:32990-3003. [PMID: 27105508 PMCID: PMC5078069 DOI: 10.18632/oncotarget.8843] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 03/31/2016] [Indexed: 12/14/2022] Open
Abstract
Combination therapy has a higher success rate for many cancers compared to mono-therapy. The treatment of Topotecan (TPT) on gastric cancer (GC) is limited by its toxicity and the potential drug resistance. We found that the combination of the saponin monomer 13 from the dwarf lilyturf tuber (DT-13), performing anti-metastasis and anti-angiogenesis effects, with TPT synergistically induced apoptotic cytotoxicity in GCs with high EGF receptor (EGFR) expression, which was dependent on DT-13-induced endocytosis of EGFR. With TPT, DT-13 promoted EGFR ubiquitin--mediated degradation through myosin IIA-induced and Src/ caveolin-1 (Cav-1)-induced endocytosis of EGFR; inhibited EGFR downstream signalling and then increased the pro-apoptotic effects. Moreover, the synergistic pro-apoptotic efficacy of DT-13 and TPT in GCs with high EGFR expression was eliminated by both the NM II inhibitor (-)-blebbistatin and MYH-9 shRNA. The combination therapy of DT-13 with TPT showed stronger anti-tumour effects in vivo compared with their individual effects. Moreover, the results of combination therapy revealed selective upregulation of pro-apoptotic activity in TUNEL assays and cleaved caspase-3 and NM IIA in immunohischemical analysis; while specific downregulation of p-extracellular regulated kinase 1/2 (p-ERK1/2), EGFR and Cav-1 in immunohischemical analysis. Collectively, these findings have significant clinical implications for patients with tumours harbouring high EGFR expression due to the possible high sensitivity of this regimen.
Collapse
Affiliation(s)
- Xiao-Wen Yu
- Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, China
| | - Sensen Lin
- Jiangsu Key laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Hong-Zhi Du
- Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, China
| | - Ren-Ping Zhao
- Department of Biophysics, University of Saarland, Homburg, Germany
| | - Shu-Yun Feng
- Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, China
| | - Bo-Yang Yu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, Nanjing, China
| | - Lu-Yong Zhang
- Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, China
| | - Rui-Ming Li
- Tasly Research Institute, Tianjin Tasly Holding Group Co. Ltd., Tianjin, China
| | - Chang-Min Qian
- Tasly Research Institute, Tianjin Tasly Holding Group Co. Ltd., Tianjin, China
| | - Xue-Jun Luo
- Tasly Research Institute, Tianjin Tasly Holding Group Co. Ltd., Tianjin, China
| | - Sheng-Tao Yuan
- Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, China
| | - Li Sun
- Jiangsu Key laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
9
|
Chen MH, Chen XJ, Wang M, Lin LG, Wang YT. Ophiopogon japonicus--A phytochemical, ethnomedicinal and pharmacological review. JOURNAL OF ETHNOPHARMACOLOGY 2016; 181:193-213. [PMID: 26826325 DOI: 10.1016/j.jep.2016.01.037] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Revised: 12/30/2015] [Accepted: 01/22/2016] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ophiopogonis Radix (Maidong in Chinese), the root of Ophiopogon japonicus, is widely used in local medicines of China, Japan and some south-eastern Asian countries. According to the traditional Chinese medicine (TCM) principle, Ophiopogonis Radix nourishes the yin, promotes body fluid production, moistens the lung, eases the mind and clears away heart fire. This review summarizes the achievements of the investigations in botany, phytochemistry, quality control, traditional uses, pharmacological activities and clinical studies on O. japonicus; this review also describes the shortcomings of studies on this herbal drug and thus serves as the basis of further scientific research and development of this traditional herbal drug. MATERIALS AND METHODS O. japonicus-related information was collected from various resources, including books on Chinese herbs and the Internet databases, such as Google Scholar, SciFinder, Web of Science, Elsevier, ACS, PubMed and China Knowledge Resource Integrated (CNKI). RESULTS O. japonicus is widely distributed in East Asia, especially in China. Numerous compounds were identified from this plant. The main components of O. japonicus include steroidal saponins, homoisoflavonoids and polysaccharides, which exhibited various pharmacological activities, such as cardiovascular protection, anti-inflammation, anticancer, anti-oxidation, immunomodulation, cough relief, antimicrobial, and anti-diabetes. CONCLUSIONS O. japonicus is a common traditional Chinese herbal drug used as the main ingredient in many prescriptions. Modern researches verified that O. japonicus can be used either as a healthy food or a therapeutic agent for disease prevention and treatment. The molecular mechanisms and chemical principles of this herbal medicine should be further explored.
Collapse
Affiliation(s)
- Min-Hui Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Xiao-Jia Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China; Sino-Dutch Center for Preventive and Personalized Medicine/Leiden Amsterdam Center for Drug Research (LACDR), Leiden University, Leiden, The Netherlands
| | - Mei Wang
- Sino-Dutch Center for Preventive and Personalized Medicine/Leiden Amsterdam Center for Drug Research (LACDR), Leiden University, Leiden, The Netherlands
| | - Li-Gen Lin
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Yi-Tao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| |
Collapse
|
10
|
Park T, Lee S. Clinical Experiences of Korean Medicine Treatment against Urinary Bladder Cancer in General Practice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2016; 2016:3759069. [PMID: 27190532 PMCID: PMC4844875 DOI: 10.1155/2016/3759069] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 03/13/2016] [Indexed: 11/23/2022]
Abstract
Urinary bladder cancer (UBC) is one of the most common cancers, with 1 out of every 26 men and 1 out of every 80 women worldwide developing the disease during their lifetime. Moreover, it is a disease that predominantly affects the elderly and is becoming a major health problem as the elderly population continues to rapidly increase. In spite of the rapid development of medical science, the 5-year survival rate has remained around 75% since the 1990s, and the FDA has approved no new drugs for UBC over the last 10 years. In addition, most patients experience frequent recurrence and poor quality of life after diagnosis. Therefore, in order to solve unmet needs by alternative methods, we present our clinical cases of UBC where we observed outstanding results including regression and recurrence prevention exclusively through Traditional Korean Medicine such as (1) herbal therapy, (2) acupuncture, (3) pharmacopuncture and needle-embedding therapy, (4) moxibustion, and (5) cupping therapy. From our experience, it appears that multimodal strategies for synergistic efficiency are more effective than single Korean Medicine treatment. We hope this will encourage investigation of the efficacy of Korean Medicine treatment in clinical trials for UBC patients.
Collapse
Affiliation(s)
- Taeyeol Park
- 1Kyeongin Traditional Korean Medicine Clinic, 84-3 Dadae 2-dong, Saha-gu, Busan, Republic of Korea
| | - Sanghun Lee
- 2Department of Medical Consilience, Graduate School, Dankook University, 152 Jukjeon-ro, Suji-gu, Yongin-si, Gyeonggi-do 448-701, Republic of Korea
- *Sanghun Lee:
| |
Collapse
|
11
|
|