1
|
Tan SC, Rajendran R, Bhattamisra SK, Krishnappa P, Davamani F, Chitra E, Ambu S, Furman B, Candasamy M. Protective effects of madecassoside, a triterpenoid from Centella asiatica, against oxidative stress in INS-1E cells. Nat Prod Res 2025; 39:2787-2794. [PMID: 38340357 DOI: 10.1080/14786419.2024.2315499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/19/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024]
Abstract
Progressive decline in β cell function and reduction in the β cell mass is important in type 2 diabetes. Here, we tested the hypothesis that madecassoside's previously demonstrated in vivo protective effects on the β cell in experimental diabetes were exerted directly. We investigated the effects of madecassoside in protecting a β cell line (INS-1E) against a variety of agents. INS-1E cells were treated with madecassoside in the presence of high glucose (HG), a cytokine mixture, hydrogen peroxide (H2O2), or streptozotocin (STZ). HG, the cytokine mixture, H2O2 and STZ each produced a significant decrease in cell viability; this was significantly reversed by madecassoside. Pre-treatment with madecassoside reduced the number of apoptotic cells induced by HG, the cytokine mixture, H2O2, and STZ, and concentration-dependently reduced ROS production. Madecassoside also significantly enhanced glucose-induced insulin secretion. The results suggest that madecassoside's in vivo effects are exerted directly on the β cell.
Collapse
Affiliation(s)
- Swee Ching Tan
- School of Postgraduate Studies, International Medical University, Kuala Lumpur, Malaysia
| | - Ramkumar Rajendran
- Faculty of Medicine, University of Adelaide, Adelaide, Australia
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Subrat Kumar Bhattamisra
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
- School of Pharmacy, GITAM (Deemed to be University), Visakhapatnam, India
| | - Purushotham Krishnappa
- Department of Pathology, School of Medicine, International Medical University, Kuala Lumpur, Malaysia
| | - Fabian Davamani
- Division of Applied Biomedical Sciences and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| | - Ebenezer Chitra
- Division of Applied Biomedical Sciences and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| | - Stephen Ambu
- School of Postgraduate Studies, International Medical University, Kuala Lumpur, Malaysia
| | - Brian Furman
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Mayuren Candasamy
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
- Centre for Bioactive Molecules & Drug Delivery, Institute for Research, Development and Innovation, International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
2
|
Zhou W, Wu WH, Si ZL, Liu HL, Wang H, Jiang H, Liu YF, Alolga RN, Chen C, Liu SJ, Bian XY, Shan JJ, Li J, Tan NH, Zhang ZH. The gut microbe Bacteroides fragilis ameliorates renal fibrosis in mice. Nat Commun 2022; 13:6081. [PMID: 36241632 PMCID: PMC9568537 DOI: 10.1038/s41467-022-33824-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 10/03/2022] [Indexed: 12/24/2022] Open
Abstract
Renal fibrosis is an inevitable outcome of various manifestations of progressive chronic kidney diseases (CKD). The need for efficacious treatment regimen against renal fibrosis can therefore not be overemphasized. Here we show a novel protective role of Bacteroides fragilis (B. fragilis) in renal fibrosis in mice. We demonstrate decreased abundance of B. fragilis in the feces of CKD patients and unilateral ureteral obstruction (UUO) mice. Oral administration of live B. fragilis attenuates renal fibrosis in UUO and adenine mice models. Increased lipopolysaccharide (LPS) levels are decreased after B. fragilis administration. Results of metabolomics and proteomics studies show decreased level of 1,5-anhydroglucitol (1,5-AG), a substrate of SGLT2, which increases after B. fragilis administration via enhancement of renal SGLT2 expression. 1,5-AG is an agonist of TGR5 that attenuates renal fibrosis by inhibiting oxidative stress and inflammation. Madecassoside, a natural product found via in vitro screening promotes B. fragilis growth and remarkably ameliorates renal fibrosis. Our findings reveal the ameliorative role of B. fragilis in renal fibrosis via decreasing LPS and increasing 1,5-AG levels.
Collapse
Affiliation(s)
- Wei Zhou
- grid.254147.10000 0000 9776 7793State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Wen-hui Wu
- grid.254147.10000 0000 9776 7793State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Zi-lin Si
- grid.254147.10000 0000 9776 7793State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hui-ling Liu
- grid.254147.10000 0000 9776 7793State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hanyu Wang
- grid.254147.10000 0000 9776 7793State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hong Jiang
- grid.254147.10000 0000 9776 7793State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ya-fang Liu
- grid.254147.10000 0000 9776 7793State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Raphael N. Alolga
- grid.254147.10000 0000 9776 7793State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Cheng Chen
- grid.412632.00000 0004 1758 2270Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shi-jia Liu
- grid.410745.30000 0004 1765 1045Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xue-yan Bian
- grid.13402.340000 0004 1759 700XNingbo Hospital of Zhejiang University, Ningbo, China
| | - Jin-jun Shan
- grid.410745.30000 0004 1765 1045Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jing Li
- grid.254147.10000 0000 9776 7793School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Ning-hua Tan
- grid.254147.10000 0000 9776 7793State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Zhi-hao Zhang
- grid.254147.10000 0000 9776 7793State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
3
|
de Carvalho LSA, de Souza VC, Rodrigues VC, Ribeiro AC, Nascimento JWL, Capriles PVSZ, Pinto PDF, de Moraes J, da Silva Filho AA. Identification of Asiaticoside from Centella erecta (Apiaceae) as Potential Apyrase Inhibitor by UF-UHPLC-MS and Its In Vivo Antischistosomal Activity. Pharmaceutics 2022; 14:pharmaceutics14051071. [PMID: 35631657 PMCID: PMC9143675 DOI: 10.3390/pharmaceutics14051071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 11/16/2022] Open
Abstract
Schistosomiasis, caused by parasites of the genus Schistosoma, is a neglected disease with high global prevalence, affecting more than 240 million people in several countries. Praziquantel (PZQ) is the only drug currently available for the treatment. S. mansoni NTPDases (known as SmNTPDases, ATP diphosphohydrolases or ecto-apyrases) are potential drug targets for the discovery of new antischistosomal drugs. In this study, we screen NTPDases inhibitors from Centella erecta (Apiaceae) using an ultrafiltration combined UHPLC-QTOF-MS method and potato apyrase, identifying asiaticoside as one of the apyrase-binding compounds. After isolation of asiaticoside from C. erecta extract, we assessed its in vivo antischistosomal activities against Schistosoma mansoni worms and its in vitro enzymatic apyrase inhibition. Also, molecular docking analysis of asiaticoside against potato apyrase, S. mansoni NTPDases 1 and 2 were performed. Asiaticoside showed a significant in vitro apyrase inhibition and molecular docking studies corroborate with its possible actions in potato apyrase and S. mansoni NTPDases. In mice harboring a patent S. mansoni infection, a single oral dose of asiaticoside (400 mg/kg. p.o.) showed significantly in vivo antischistosomal efficacy, markedly decreasing the total worm load and egg burden, giving support for further exploration of apyrase inhibitors as antischistosomal agents.
Collapse
Affiliation(s)
- Lara Soares Aleixo de Carvalho
- Faculdade de Farmácia, Departamento de Ciências Farmacêuticas, Universidade Federal de Juiz de Fora, R. José Lourenço Kelmer s/n, Campus Universitário, Juiz de Fora 36036-900, MG, Brazil;
| | - Vinícius Carius de Souza
- Programa de Pós-Graduação em Modelagem Computacional, Departamento de Ciência da Computação, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora, Juiz de Fora 36036-900, MG, Brazil; (V.C.d.S.); (P.V.S.Z.C.)
| | - Vinícius C. Rodrigues
- Núcleo de Pesquisa em Doenças Negligenciadas, Universidade Guarulhos, Guarulhos 07023-070, SP, Brazil; (V.C.R.); (J.d.M.)
| | - Aline Correa Ribeiro
- Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora 36036-900, MG, Brazil; (A.C.R.); (J.W.L.N.); (P.d.F.P.)
| | - Jorge Willian Leandro Nascimento
- Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora 36036-900, MG, Brazil; (A.C.R.); (J.W.L.N.); (P.d.F.P.)
| | - Priscila V. S. Z. Capriles
- Programa de Pós-Graduação em Modelagem Computacional, Departamento de Ciência da Computação, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora, Juiz de Fora 36036-900, MG, Brazil; (V.C.d.S.); (P.V.S.Z.C.)
| | - Priscila de F. Pinto
- Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora 36036-900, MG, Brazil; (A.C.R.); (J.W.L.N.); (P.d.F.P.)
| | - Josué de Moraes
- Núcleo de Pesquisa em Doenças Negligenciadas, Universidade Guarulhos, Guarulhos 07023-070, SP, Brazil; (V.C.R.); (J.d.M.)
| | - Ademar Alves da Silva Filho
- Faculdade de Farmácia, Departamento de Ciências Farmacêuticas, Universidade Federal de Juiz de Fora, R. José Lourenço Kelmer s/n, Campus Universitário, Juiz de Fora 36036-900, MG, Brazil;
- Correspondence: ; Tel.: +55-32-21023893; Fax: +55-32-21023801
| |
Collapse
|
4
|
Wright KM, Bollen M, David J, Speers AB, Brandes MS, Gray NE, Alcázar Magaña A, McClure C, Stevens JF, Maier CS, Quinn JF, Soumyanath A. Pharmacokinetics and Pharmacodynamics of Key Components of a Standardized Centella asiatica Product in Cognitively Impaired Older Adults: A Phase 1, Double-Blind, Randomized Clinical Trial. Antioxidants (Basel) 2022; 11:215. [PMID: 35204098 PMCID: PMC8868383 DOI: 10.3390/antiox11020215] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 11/24/2022] Open
Abstract
Centella asiatica is reputed in Eastern medicine to improve cognitive function in humans. Preclinical studies have demonstrated that aqueous extracts of C. asiatica improve cognition in mouse models of aging and Alzheimer's disease (AD) through the modulation of mitochondrial biogenesis and nuclear factor-erythroid-2-related factor 2 (Nrf2)-dependent antioxidant response genes. This randomized, double-blind, crossover Phase I trial explored the oral bioavailability and pharmacokinetics of key compounds from two doses (2 g and 4 g) of a standardized C. asiatica aqueous extract product (CAP), over 10 h, in four mildly demented older adults on cholinesterase inhibitor therapy. The analysis focused on triterpenes (TTs) and caffeoylquinic acids (CQAs), which are known to contribute to C. asiatica's neurological activity. The acute safety of CAP and the effects on NRF2 gene expression in peripheral blood mononuclear cells were evaluated. Single administration of 2 g or 4 g of CAP was safe and well-tolerated. The TT aglycones, asiatic acid and madecassic acid, were identified in plasma and urine, while the parent glycosides, asiaticoside and madecassoside, although abundant in CAP, were absent in plasma and had limited renal excretion. Similarly, mono- and di-CQAs showed delayed absorption and limited presence in plasma or urine, while the putative metabolites of these compounds showed detectable plasma pharmacokinetic profiles and urinary excretion. CAP elicited a temporal change in NRF2 gene expression, mirroring the TT aglycone's pharmacokinetic curve in a paradoxical dose-dependent manner. The oral bioavailability of active compounds or their metabolites, NRF2 target engagement, and the acute safety and tolerability of CAP support the validity of using CAP in future clinical studies.
Collapse
Affiliation(s)
- Kirsten M. Wright
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA; (K.M.W.); (M.B.); (J.D.); (A.B.S.); (M.S.B.); (N.E.G.); (C.M.); (J.F.Q.)
| | - Melissa Bollen
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA; (K.M.W.); (M.B.); (J.D.); (A.B.S.); (M.S.B.); (N.E.G.); (C.M.); (J.F.Q.)
| | - Jason David
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA; (K.M.W.); (M.B.); (J.D.); (A.B.S.); (M.S.B.); (N.E.G.); (C.M.); (J.F.Q.)
| | - Alex B. Speers
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA; (K.M.W.); (M.B.); (J.D.); (A.B.S.); (M.S.B.); (N.E.G.); (C.M.); (J.F.Q.)
| | - Mikah S. Brandes
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA; (K.M.W.); (M.B.); (J.D.); (A.B.S.); (M.S.B.); (N.E.G.); (C.M.); (J.F.Q.)
| | - Nora E. Gray
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA; (K.M.W.); (M.B.); (J.D.); (A.B.S.); (M.S.B.); (N.E.G.); (C.M.); (J.F.Q.)
| | - Armando Alcázar Magaña
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA; (A.A.M.); (C.S.M.)
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR 97331, USA;
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
| | - Christine McClure
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA; (K.M.W.); (M.B.); (J.D.); (A.B.S.); (M.S.B.); (N.E.G.); (C.M.); (J.F.Q.)
| | - Jan F. Stevens
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR 97331, USA;
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
| | - Claudia S. Maier
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA; (A.A.M.); (C.S.M.)
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
| | - Joseph F. Quinn
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA; (K.M.W.); (M.B.); (J.D.); (A.B.S.); (M.S.B.); (N.E.G.); (C.M.); (J.F.Q.)
- Department of Neurology, Veterans Affairs Portland Health Care System Center, Portland, OR 97239, USA
| | - Amala Soumyanath
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA; (K.M.W.); (M.B.); (J.D.); (A.B.S.); (M.S.B.); (N.E.G.); (C.M.); (J.F.Q.)
| |
Collapse
|
5
|
Actions and Therapeutic Potential of Madecassoside and Other Major Constituents of Centella asiatica: A Review. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11188475] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Centella asiatica is a popular herb well-known for its wide range of therapeutic effects and its use as a folk medicine for many years. Its therapeutic properties have been well correlated with the presence of asiaticoside, madecassoside, asiatic and madecassic acids, the pentacyclic triterpenes. The herb has been extensively known to treat skin conditions; nevertheless, several pre-clinical and clinical studies have scientifically demonstrated its effectiveness in other disorders. Among the active constituents that have been identified in Centella asiatica, madecassoside has been the subject of only a relatively small number of scientific reports. Therefore, this review, while including other major constituents of this plant, focuses on the therapeutic potential, pharmacokinetics and toxicity of madecassoside.
Collapse
|
6
|
Qiao S, Lian X, Yue M, Zhang Q, Wei Z, Chen L, Xia Y, Dai Y. Regulation of gut microbiota substantially contributes to the induction of intestinal Treg cells and consequent anti-arthritis effect of madecassoside. Int Immunopharmacol 2020; 89:107047. [DOI: 10.1016/j.intimp.2020.107047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/23/2020] [Accepted: 09/23/2020] [Indexed: 12/18/2022]
|
7
|
Ghiulai R, Roşca OJ, Antal DS, Mioc M, Mioc A, Racoviceanu R, Macaşoi I, Olariu T, Dehelean C, Creţu OM, Voicu M, Şoica C. Tetracyclic and Pentacyclic Triterpenes with High Therapeutic Efficiency in Wound Healing Approaches. Molecules 2020; 25:E5557. [PMID: 33256207 PMCID: PMC7730621 DOI: 10.3390/molecules25235557] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 02/06/2023] Open
Abstract
Wounds are among the most common skin conditions, displaying a large etiological diversity and being characterized by different degrees of severity. Wound healing is a complex process that involves multiple steps such as inflammation, proliferation and maturation and ends with scar formation. Since ancient times, a widely used option for treating skin wounds are plant- based treatments which currently have become the subject of modern pharmaceutical formulations. Triterpenes with tetracyclic and pentacyclic structure are extensively studied for their implication in wound healing as well as to determine their molecular mechanisms of action. The current review aims to summarize the main results of in vitro, in vivo and clinical studies conducted on lupane, ursane, oleanane, dammarane, lanostane and cycloartane type triterpenes as potential wound healing treatments.
Collapse
Affiliation(s)
- Roxana Ghiulai
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Victor Babeş University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timişoara, Romania; (R.G.); (O.J.R.); (M.M.); (R.R.); (C.Ş.)
| | - Oana Janina Roşca
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Victor Babeş University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timişoara, Romania; (R.G.); (O.J.R.); (M.M.); (R.R.); (C.Ş.)
| | - Diana Simona Antal
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Victor Babeş University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timişoara, Romania
| | - Marius Mioc
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Victor Babeş University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timişoara, Romania; (R.G.); (O.J.R.); (M.M.); (R.R.); (C.Ş.)
| | - Alexandra Mioc
- Department of Anatomy, Physiology, Pathophysiology, Faculty of Pharmacy, Victor Babeş University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timişoara, Romania;
| | - Roxana Racoviceanu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Victor Babeş University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timişoara, Romania; (R.G.); (O.J.R.); (M.M.); (R.R.); (C.Ş.)
| | - Ioana Macaşoi
- Department of Toxicology, Faculty of Pharmacy, Victor Babeş University of Medicine and Pharmacy, 2nd EftimieMurgu Sq., 300041 Timişoara, Romania; (I.M.); (C.D.)
| | - Tudor Olariu
- Department of Organic Chemistry, Faculty of Pharmacy, Victor Babeş University of Medicine and Pharmacy, 2nd EftimieMurgu Sq., 300041 Timişoara, Romania;
| | - Cristina Dehelean
- Department of Toxicology, Faculty of Pharmacy, Victor Babeş University of Medicine and Pharmacy, 2nd EftimieMurgu Sq., 300041 Timişoara, Romania; (I.M.); (C.D.)
| | - Octavian Marius Creţu
- Department of Surgery, Faculty of Medicine, Victor Babeş University of Medicine and Pharmacy, 2nd EftimieMurgu Sq., 300041 Timişoara, Romania;
| | - Mirela Voicu
- Department of Pharmacology, Faculty of Pharmacy, Victor Babeş University of Medicine and Pharmacy, 2nd EftimieMurgu Sq., 300041 Timişoara, Romania
| | - Codruţa Şoica
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Victor Babeş University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timişoara, Romania; (R.G.); (O.J.R.); (M.M.); (R.R.); (C.Ş.)
| |
Collapse
|
8
|
Xia Y, Xia Y, Lv Q, Yue M, Qiao S, Yang Y, Wei Z, Dai Y. Madecassoside ameliorates bleomycin-induced pulmonary fibrosis in mice through promoting the generation of hepatocyte growth factor via PPAR-γ in colon. Br J Pharmacol 2016; 173:1219-35. [PMID: 26750154 PMCID: PMC5341335 DOI: 10.1111/bph.13421] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 01/04/2016] [Accepted: 01/07/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND PURPOSE Madecassoside has potent anti-pulmonary fibrosis (PF) effects when administered p.o., despite having extremely low oral bioavailability. Herein, we explored the mechanism of this anti-PF effect with regard to gut hormones. EXPERIMENTAL APPROACH A PF model was established in mice by intratracheal instillation of bleomycin. Haematoxylin and eosin stain and Masson's trichrome stain were used to assess histological changes in the lung. Quantitative-PCR and Western blot detected mRNA and protein levels, respectively, and cytokines were measured by ELISA. Small interfering RNA was used for gene-silencing. EMSA was applied to detect DNA-binding activity. KEY RESULTS Administration of madecassoside, p.o., but not its main metabolite madecassic acid, exhibited a direct anti-PF effect in mice. However, i.p. madecassoside had no anti-PF effect. Madecassoside increased the expression of hepatocyte growth factor (HGF) in colon tissues, and HGF receptor antagonists attenuated its anti-PF effect. Madecassoside facilitated the secretion of HGF from colonic epithelial cells by activating the PPAR-γ pathway, as shown by an up-regulation of PPAR-γ mRNA expression, nuclear translocation and DNA-binding activity both in vitro and in vivo. Also GW9662, a selective PPAR-γ antagonist, almost completely prevented the madecassoside-induced increased expression of HGF and amelioration of PF. CONCLUSIONS AND IMPLICATIONS The potent anti-PF effects induced by p.o. madecassoside in mice are not mediated by its metabolites or itself after absorption into blood. Instead, madecassoside increases the activity of PPAR-γ, which subsequently increases HGF expression in colonic epithelial cells. HGF then enters into the circulation and lung tissue to exert an anti-PF effect.
Collapse
Affiliation(s)
- Ying Xia
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Department of Pharmacology of Chinese Materia MedicaChina Pharmaceutical University24 Tong Jia XiangNanjing210009China
| | - Yu‐Feng Xia
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Department of Pharmacology of Chinese Materia MedicaChina Pharmaceutical University24 Tong Jia XiangNanjing210009China
| | - Qi Lv
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Department of Pharmacology of Chinese Materia MedicaChina Pharmaceutical University24 Tong Jia XiangNanjing210009China
| | - Meng‐Fan Yue
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Department of Pharmacology of Chinese Materia MedicaChina Pharmaceutical University24 Tong Jia XiangNanjing210009China
| | - Si‐Miao Qiao
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Department of Pharmacology of Chinese Materia MedicaChina Pharmaceutical University24 Tong Jia XiangNanjing210009China
| | - Yan Yang
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Department of Pharmacology of Chinese Materia MedicaChina Pharmaceutical University24 Tong Jia XiangNanjing210009China
| | - Zhi‐Feng Wei
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Department of Pharmacology of Chinese Materia MedicaChina Pharmaceutical University24 Tong Jia XiangNanjing210009China
| | - Yue Dai
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Department of Pharmacology of Chinese Materia MedicaChina Pharmaceutical University24 Tong Jia XiangNanjing210009China
| |
Collapse
|
9
|
Wei ZF, Lv Q, Xia Y, Yue MF, Shi C, Xia YF, Chou GX, Wang ZT, Dai Y. Norisoboldine, an Anti-Arthritis Alkaloid Isolated from Radix Linderae, Attenuates Osteoclast Differentiation and Inflammatory Bone Erosion in an Aryl Hydrocarbon Receptor-Dependent Manner. Int J Biol Sci 2015; 11:1113-26. [PMID: 26221077 PMCID: PMC4515821 DOI: 10.7150/ijbs.12152] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 06/12/2015] [Indexed: 12/31/2022] Open
Abstract
Norisoboldine (NOR), the primary isoquinoline alkaloid constituent of the root of Lindera aggregata, has previously been demonstrated to attenuate osteoclast (OC) differentiation. Accumulative evidence has shown that aryl hydrocarbon receptor (AhR) plays an important role in regulating the differentiation of various cells, and multiple isoquinoline alkaloids can modulate AhR. In the present study, we explored the role of NOR in the AhR signaling pathway. These data showed that the combination of AhR antagonist resveratrol (Res) or α-naphthoflavone (α-NF) nearly reversed the inhibition of OC differentiation through NOR. NOR could stably bind to AhR, up-regulate the nuclear translocation of AhR, and enhance the accumulation of the AhR-ARNT complex, AhR-mediated reporter gene activity and CYP1A1 expression in RAW 264.7 cells, suggesting that NOR might be an agonist of AhR. Moreover, NOR inhibited the nuclear translocation of NF-κB-p65, resulting in the evident accumulation of the AhR-NF-κB-p65 complex, which could be markedly inhibited through either Res or α-NF. Although NOR only slightly affected the expression of HIF-1α, NOR markedly reduced VEGF mRNA expression and ARNT-HIF-1α complex accumulation. In vivo studies indicated that NOR decreased the number of OCs and ameliorated the bone erosion in the joints of rats with collagen-induced arthritis, accompanied by the up-regulation of CYP1A1 and the down-regulation of VEGF mRNA expression in the synovium of rats. A combination of α-NF nearly completely reversed the effects of NOR. In conclusion, NOR attenuated OC differentiation and bone erosion through the activation of AhR and the subsequent inhibition of both NF-κB and HIF pathways.
Collapse
Affiliation(s)
- Zhi-feng Wei
- 1. State Key Laboratory of Natural Medicine, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Qi Lv
- 1. State Key Laboratory of Natural Medicine, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Ying Xia
- 1. State Key Laboratory of Natural Medicine, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Meng-fan Yue
- 1. State Key Laboratory of Natural Medicine, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Can Shi
- 1. State Key Laboratory of Natural Medicine, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Yu-feng Xia
- 1. State Key Laboratory of Natural Medicine, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Gui-xin Chou
- 2. Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zheng-tao Wang
- 2. Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yue Dai
- 1. State Key Laboratory of Natural Medicine, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| |
Collapse
|