1
|
Li T, Wu F, Zhang A, Dong H, Ullah I, Lin H, Miao J, Sun H, Han Y, He Y, Wang X. High-Throughput Chinmedomics Strategy Discovers the Quality Markers and Mechanisms of Wutou Decoction Therapeutic for Rheumatoid Arthritis. Front Pharmacol 2022; 13:854087. [PMID: 35496313 PMCID: PMC9039025 DOI: 10.3389/fphar.2022.854087] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/15/2022] [Indexed: 11/24/2022] Open
Abstract
Wutou decoction (WTD) is a traditional Chinese medicine prescription for the treatment of rheumatoid arthritis (RA), and this study systematically analyzed the metabolic mechanism and key pharmacodynamic components of WTD in RA rats by combining untargeted metabolomics and serum pharmacochemistry of traditional Chinese medicine to enrich the evidence of WTD quality markers (Q-markers) studies. WTD prevented synovial edema in RA rats and reduced tumor necrosis factor-alpha and interleukin 6 levels in rat serum, according to the results of an enzyme-linked immunosorbent examination and histopathological inspection. In model rats, pattern recognition and multivariate statistical analysis revealed 24 aberrant metabolites that disrupted linoleic acid metabolism, arachidonic acid metabolism, arginine and proline metabolism, etc. However, continued dosing of WTD for 28 days reversed 13 abnormal metabolites, which may be an important therapeutic mechanism from a metabolomic perspective. Importantly, 12 prototypical components and 16 metabolites from WTD were characterized in RA rat serum. The results of Pearson correlation analysis showed that aconitine, L-ephedrine, L-methylephedrine, quercetin, albiflorin, paeoniflorigenone, astragaline A, astragaloside II, glycyrrhetic acid, glycyrrhizic acid, licurazide, and isoliquiritigenin are the key pharmacological components that regulate the metabolism of RA rats, and they are identified as Q-markers. In sum, utilizing metabolomics and serum pharmacochemistry of traditional Chinese medicine, the metabolic mechanisms and Q-markers of WTD therapy in RA rats were revealed, providing a theoretical basis for the quality control investigation of WTD.
Collapse
Affiliation(s)
- Taiping Li
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plant, Nanning, China.,National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Fangfang Wu
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plant, Nanning, China
| | - Aihua Zhang
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Hui Dong
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ihsan Ullah
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Hao Lin
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jianhua Miao
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plant, Nanning, China
| | - Hui Sun
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ying Han
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yanmei He
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xijun Wang
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plant, Nanning, China.,National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
2
|
Zhou HX, Liu H, Han X, Nie SJ, Zhang RP, Yu JY, Li SH. Application of UPLC-QTOF-MS in Analysis of Non-targeted Urine Metabolomics in Rats with Yunaconitine Poisoning. FA YI XUE ZA ZHI 2021; 37:653-660. [PMID: 35187917 DOI: 10.12116/j.issn.1004-5619.2020.301003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
OBJECTIVES To explore the possible mechanism of Yunaconitine poisoning by studying the changes of urine metabolic profile in rats chronically poisoned by Yunaconitine via non-targeted metabolomics. METHODS A rat model of Yunaconitine poisoning was established, and a metabolomics method based on UPLC-QTOF-MS technology was used to obtain the urine metabolic profile. Principal component analysis (PCA), orthogonal projections to latent structures-discriminant analysis (OPLS-DA), variable importance in projection (VIP) value greater than 1, fold change (FC) value greater than 3 or less than 0.33 and P value less than 0.05 were used to screen potential biomarkers related to the toxicity of Yunaconitine. The metabolic pathway analysis was performed through the MetaboAnalyst website and pathological changes of related tissues were observed. RESULTS Sixteen potential biomarkers including L-isoleucine were screened, which mainly involved six metabolic pathways including the biosynthesis and degradation of valine, leucine and isoleucine, pentose and glucuronate interconversions, and propanoate metabolism, alanine, aspartate and glutamate metabolism, tyrosine metabolism. Pathological studies showed that rat toxic change in nervous system, liver and cardiac caused by Yunaconitine. CONCLUSIONS Yunaconitine may cause neurotoxicity, hepatotoxicity and cardiotoxicity by affecting amino acid and glucose metabolism.
Collapse
Affiliation(s)
- Hui-Xia Zhou
- School of Forensic Medicine, Kunming Medical University, Kunming 650500, China
| | - Huan Liu
- Judicial Expertise Center, Kunming Medical University, Kunming 650500, China
| | - Xue Han
- School of Forensic Medicine, Kunming Medical University, Kunming 650500, China
| | - Sheng-Jie Nie
- School of Forensic Medicine, Kunming Medical University, Kunming 650500, China
| | - Rong-Ping Zhang
- School of Medicine, Kunming Medical University, Kunming 650500, China
- School of Traditional Chinese Pharmacy, Yunnan University of Traditional Chinese Medicine, Kunming 650500, China
| | - Jian-Yun Yu
- School of Forensic Medicine, Kunming Medical University, Kunming 650500, China
| | - Shu-Hua Li
- School of Forensic Medicine, Kunming Medical University, Kunming 650500, China
| |
Collapse
|
3
|
Cai P, Qiu H, Qi F, Zhang X. The toxicity and safety of traditional Chinese medicines: Please treat with rationality. Biosci Trends 2019; 13:367-373. [PMID: 31564696 DOI: 10.5582/bst.2019.01244] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Pingping Cai
- Department of Traditional Chinese Medicine, Shandong Provincial Hospital affiliated to Shandong Universityy, Ji'nan, China
| | - Hua Qiu
- Department of gynecology, Jinan Municipal Hospital of Traditional Chinese Medicine, Ji'nan, China
| | - Fanghua Qi
- Department of Traditional Chinese Medicine, Shandong Provincial Hospital affiliated to Shandong Universityy, Ji'nan, China
| | - Xiaoyi Zhang
- Department of Traditional Chinese Medicine, Shandong Provincial Hospital affiliated to Shandong Universityy, Ji'nan, China
| |
Collapse
|
4
|
Network toxicology and LC-MS-based metabolomics: New approaches for mechanism of action of toxic components in traditional Chinese medicines. CHINESE HERBAL MEDICINES 2019. [DOI: 10.1016/j.chmed.2019.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
5
|
Metabolomics of Aurantio-Obtusin-Induced Hepatotoxicity in Rats for Discovery of Potential Biomarkers. Molecules 2019; 24:molecules24193452. [PMID: 31547563 PMCID: PMC6804130 DOI: 10.3390/molecules24193452] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 09/16/2019] [Accepted: 09/20/2019] [Indexed: 01/17/2023] Open
Abstract
Aurantio-obtusin is an anthraquinone derived from Cassia obtusifolia (cassiae semen). It is also used as a tool and a detection index for the identification of cassiae semen, as stipulated by the Chinese Pharmacopoeia. Anthraquinones, the main components in cassiae semen, have been reported to show hepatotoxicity. This study investigates the hepatotoxicity of aurantio-obtusin in male Sprague–Dawley rats. We randomly divided the animals into a blank control group and treated three test groups with different doses of aurantio-obtusin: Low dose (4 mg/kg), medium dose (40 mg/kg), and high dose (200 mg/kg). Each group was treated with aurantio-obtusin for 28 days, whereas the control group was administered an equal volume of 0.5% carboxymethyl cellulose sodium salt (CMC-Na) aqueous solution. Subsequently, we conducted biochemical, hematological, and pathological investigations and determined the weight of different organs. We used serum metabolomics to identify possible biomarkers related to hepatotoxicity. The low-dose group showed no significant liver injury, whereas the medium- and high-dose groups manifested obvious liver injury. Compared with the control group, the test groups showed an increase in alanine transaminase, aspartate transaminase, and alkaline phosphatase levels. The liver organ coefficient also significantly increased. Additionally, we found significant changes in the hematological indices. Metabolomics analysis showed that aurantio-obtusin induced 28 endogenous markers related to liver injury. Our data indicate that aurantio-obtusin induces hepatotoxicity in rat liver in a dose-dependent manner and is mediated by pathways involving bile acids, fatty acids, amino acids, and energy metabolism. In particular, changes in bile acid content during treatment with therapeutic agents containing aurantio-obtusin deserve increased attention.
Collapse
|
6
|
Duan L, Guo L, Wang L, Yin Q, Zhang CM, Zheng YG, Liu EH. Application of metabolomics in toxicity evaluation of traditional Chinese medicines. Chin Med 2018; 13:60. [PMID: 30524499 PMCID: PMC6278008 DOI: 10.1186/s13020-018-0218-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 11/29/2018] [Indexed: 01/14/2023] Open
Abstract
Traditional Chinese medicines (TCM) have a long history of use because of its potential complementary therapy and fewer adverse effects. However, the toxicity and safety issues of TCM have drawn considerable attention in the past two decades. Metabolomics is an “omics” approach that aims to comprehensively analyze all metabolites in biological samples. In agreement with the holistic concept of TCM, metabolomics has shown great potential in efficacy and toxicity evaluation of TCM. Recently, a large amount of metabolomic researches have been devoted to exploring the mechanism of toxicity induced by TCM, such as hepatotoxicity, nephrotoxicity, and cardiotoxicity. In this paper, the application of metabolomics in toxicity evaluation of bioactive compounds, TCM extracts and TCM prescriptions are reviewed, and the potential problems and further perspectives for application of metabolomics in toxicological studies are also discussed.
Collapse
Affiliation(s)
- Li Duan
- 1College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang, 050024 China
| | - Long Guo
- 2School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200 China.,4Hebei Key Laboratory of Chinese Medicine Research on Cardio-cerebrovascular Disease, Hebei University of Chinese Medicine, Shijiazhuang, 050200 China
| | - Lei Wang
- 2School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200 China
| | - Qiang Yin
- Department of Management, Xinjiang Uygur Pharmaceutical Co., Ltd., Wulumuqi, 830001 China
| | - Chen-Meng Zhang
- 1College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang, 050024 China
| | - Yu-Guang Zheng
- 2School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200 China
| | - E-Hu Liu
- 3State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009 China
| |
Collapse
|
7
|
Detoxication mechanisms of Radix Tripterygium wilfordii via compatibility with Herba Lysimachia christinae in S180-bearing mice by involving Nrf2. Biosci Rep 2018; 38:BSR20180429. [PMID: 29950302 PMCID: PMC6043720 DOI: 10.1042/bsr20180429] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/16/2018] [Accepted: 06/27/2018] [Indexed: 02/07/2023] Open
Abstract
The combined administration between Radix Tripterygium wilfordii Hook F (LGT) and Herba Lysimachia christinae Hance (JQC) belongs to mutual detoxication compatibility of seven emotions in traditional Chinese medicine (TCM) theory. However, until now, the compatibility detoxication mechanisms remain unknown. The present study was undertaken to observe detoxication mechanisms of LGT through compatibility with JQC in tumor-bearing mice by involving NF-E2-related factor 2 (Nrf2)-mediated antioxidant defenses. In addition, influence of compatibility on antitumor activity was also investigated here. Our results demonstrated that compatibility with JQC administration significantly reversed LGT-elevated serum alanine/aspartate transaminase (ALT/AST) levels and alleviated hepatocytes’ swelling or degeneration damage, and at the ratio 2/1 (LGT/JQC) produced the strongest detoxication effect. Besides, compatibility with JQC administration reversed not only LGT-elevated hepatic malondialdehyde (MDA) and tumor necrosis factor-α (TNF-α) but also the LGT lowered GSH, glutathione-s transferase (GST), glutathione peroxidase (GPx), superoxide dismutase (SOD), catalase (CAT), and interleukin (IL)-10 levels. Furthermore, compatibility with JQC administration significantly up-regulated protein expression of Nrf2 and mRNA expression of it regulated downstream antioxidant genes such as heme oxygenase-1 (HO-1), NAD(P)H: quinone oxidoreductase-1 (NQO1), and glutamate cysteine ligase catalytic subunit (GCLC). In addition, compatibility with JQC further decreased LGT-decreased tumor weight and at the ratio 2/1 (LGT/JQC) also exerted the strongest synergistic effect. Collectively, through compatibility with JQC exerted detoxication effect on LGT-induced hepatotoxicity and the mechanisms could be at least partly attributed to up-regulation of Nrf2 and its downstream signals, thereby enhancing antioxidant defenses, and inhibiting lipid peroxidation, oxidative stress, and inflammation. Additionally, at the ratio 2/1 (LGT/JQC) exerted the strongest effects on both detoxication and synergism.
Collapse
|
8
|
Zhao J, Xie C, Mu X, Krausz KW, Patel DP, Shi X, Gao X, Wang Q, Gonzalez FJ. Metabolic alterations in triptolide-induced acute hepatotoxicity. Biomed Chromatogr 2018; 32:e4299. [PMID: 29799631 DOI: 10.1002/bmc.4299] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/06/2018] [Accepted: 05/16/2018] [Indexed: 12/11/2022]
Abstract
Triptolide, a major active constitute of Tripterygium wilfordii Hook. F, is prescribed for the treatment of autoimmune diseases in China. One of its most severe adverse effects observed in the clinical use is hepatotoxicity, but the mechanism is still unknown. Therefore, the present study applied an LC/MS-based metabolomic analysis to characterize the metabolomic changes in serum and liver induced by triptolide in mice. Mice were administered triptolide by gavage to establish the acute liver injury model, and serum biochemical and liver histological analyses were applied to assess the degree of toxicity. Multivariate data analyses were performed to investigate the metabolic alterations. Potential metabolites were identified using variable importance in the projection values and Student's t-test. A total of 30 metabolites were observed that were significantly changed by triptolide treatment and the abundance of 29 metabolites was correlated with the severity of toxicity. Pathway analysis indicated that the mechanism of triptolide-induced hepatotoxicity was related to alterations in multiple metabolic pathways, including glutathione metabolism, tricarboxylic acid cycle, purine metabolism, glycerophospholipid metabolism, taurine and hypotaurine metabolism, pantothenate and CoA biosynthesis, pyrimidine metabolism and amino acid metabolism. The current study provides new mechanistic insights into the metabolic alterations that lead to triptolide-induced hepatotoxicity.
Collapse
Affiliation(s)
- Jie Zhao
- Hebei Medical University, School of Pharmaceutical Science, Shijiazhuang, Hebei, China.,National Cancer Institute, National Institutes of Health, Laboratory of Metabolism, Center for Cancer Research, Bethesda, Maryland, USA
| | - Cen Xie
- National Cancer Institute, National Institutes of Health, Laboratory of Metabolism, Center for Cancer Research, Bethesda, Maryland, USA
| | - Xiyan Mu
- Hebei Medical University, School of Pharmaceutical Science, Shijiazhuang, Hebei, China
| | - Kristopher W Krausz
- National Cancer Institute, National Institutes of Health, Laboratory of Metabolism, Center for Cancer Research, Bethesda, Maryland, USA
| | - Daxesh P Patel
- National Cancer Institute, National Institutes of Health, Laboratory of Metabolism, Center for Cancer Research, Bethesda, Maryland, USA
| | - Xiaowei Shi
- Hebei Medical University, School of Pharmaceutical Science, Shijiazhuang, Hebei, China
| | - Xiaoxia Gao
- National Cancer Institute, National Institutes of Health, Laboratory of Metabolism, Center for Cancer Research, Bethesda, Maryland, USA
| | - Qiao Wang
- Hebei Medical University, School of Pharmaceutical Science, Shijiazhuang, Hebei, China
| | - Frank J Gonzalez
- National Cancer Institute, National Institutes of Health, Laboratory of Metabolism, Center for Cancer Research, Bethesda, Maryland, USA
| |
Collapse
|
9
|
Application of High-Performance Liquid Chromatography Coupled with Linear Ion Trap Quadrupole Orbitrap Mass Spectrometry for Qualitative and Quantitative Assessment of Shejin-Liyan Granule Supplements. Molecules 2018; 23:molecules23040884. [PMID: 29641474 PMCID: PMC6017834 DOI: 10.3390/molecules23040884] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 04/04/2018] [Accepted: 04/07/2018] [Indexed: 11/30/2022] Open
Abstract
A method for high-performance liquid chromatography coupled with linear ion trap quadrupole Orbitrap high-resolution mass spectrometry (HPLC-LTQ-Orbitrap MS) was developed and validated for the qualitative and quantitative assessment of Shejin-liyan Granule. According to the fragmentation mechanism and high-resolution MS data, 54 compounds, including fourteen isoflavones, eleven ligands, eight flavonoids, six physalins, six organic acids, four triterpenoid saponins, two xanthones, two alkaloids, and one licorice coumarin, were identified or tentatively characterized. In addition, ten of the representative compounds (matrine, galuteolin, tectoridin, iridin, arctiin, tectorigenin, glycyrrhizic acid, irigenin, arctigenin, and irisflorentin) were quantified using the validated HPLC-LTQ-Orbitrap MS method. The method validation showed a good linearity with coefficients of determination (r2) above 0.9914 for all analytes. The accuracy of the intra- and inter-day variation of the investigated compounds was 95.0–105.0%, and the precision values were less than 4.89%. The mean recoveries and reproducibilities of each analyte were 95.1–104.8%, with relative standard deviations below 4.91%. The method successfully quantified the ten compounds in Shejin-liyan Granule, and the results show that the method is accurate, sensitive, and reliable.
Collapse
|
10
|
Liu P, Shang EX, Zhu Y, Yu JG, Qian DW, Duan JA. Comparative Analysis of Compatibility Effects on Invigorating Blood Circulation for Cyperi Rhizoma Series of Herb Pairs Using Untargeted Metabolomics. Front Pharmacol 2017; 8:677. [PMID: 29018346 PMCID: PMC5622986 DOI: 10.3389/fphar.2017.00677] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 09/11/2017] [Indexed: 12/22/2022] Open
Abstract
The mutual-assistance compatibility of Cyperi Rhizoma (Xiangfu, XF) and Angelicae Sinensis Radix (Danggui, DG), Chuanxiong Rhizoma (Chuanxiong, CX), Paeoniae Radix Alba (Baishao, BS), or Corydalis Rhizoma (Yanhusuo, YH), found in a traditional Chinese medicine (TCM) named Xiang-Fu-Si-Wu Decoction (XFSWD), can produce synergistic and promoting blood effects. Nowadays, XFSWD has been proved to be effective in activating blood circulation and dissipating blood stasis. However, the role of the herb pairs synergistic effects in the formula were poorly understood. In order to quantitatively assess the compatibility effects of herb pairs, mass spectrometry-based untargeted metabolomics studies were performed. The plasma and urine metabolic profiles of acute blood stasis rats induced by adrenaline hydrochloride and ice water and administered with Cyperi Rhizoma-Angelicae Sinensis Radix (XD), Cyperi Rhizoma-Chuanxiong Rhizoma (XC), Cyperi Rhizoma-Paeoniae Radix Alba (XB), Cyperi Rhizoma-Corydalis Rhizoma (XY) were compared. Relative peak area of identified metabolites was calculated and principal component analysis (PCA) score plot from the potential markers was used to visualize the overall differences. Then, the metabolites results were used with biochemistry indicators and genes expression values as parameters to quantitatively evaluate the compatibility effects of XF series of herb pairs by PCA and correlation analysis. The collective results indicated that the four XF herb pairs regulated glycerophospholipid metabolism, steroid hormone biosynthesis and arachidonic acid metabolism pathway. XD was more prominent in regulating the blood stasis during the four XF herb pairs. This study demonstrated that metabolomics was a useful tool to efficacy evaluation and compatibility effects of TCM elucidation.
Collapse
Affiliation(s)
- Pei Liu
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Er-Xin Shang
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yue Zhu
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jin-Gao Yu
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Da-Wei Qian
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jin-Ao Duan
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
11
|
Rapid Screening of Chemical Constituents in Rhizoma Anemarrhenae by UPLC-Q-TOF/MS Combined with Data Postprocessing Techniques. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:4032820. [PMID: 29234389 PMCID: PMC5632855 DOI: 10.1155/2017/4032820] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 05/11/2017] [Accepted: 06/04/2017] [Indexed: 01/01/2023]
Abstract
Rhizoma Anemarrhenae, a famous traditional Chinese medicine (TCM), is the dried rhizome of Anemarrhena asphodeloides Bge. (Anemarrhena Bunge of Liliaceae). The medicine presents anti-inflammatory, antipyretic, sedative, and diuretic effects. The chemical constituents of Rhizoma Anemarrhenae are complex and diverse, mainly including steroidal saponins, flavonoids, phenylpropanoids, benzophenones, and alkaloids. In this study, UPLC-Q-TOF/MS was used in combination with data postprocessing techniques, including characteristic fragments filter and neutral loss filter, to rapidly classify and identify the five types of substances in Rhizoma Anemarrhenae. On the basis of numerous literature reviews and according to the corresponding characteristic fragments produced by different types of compounds in combination with neutral loss filtering, we summarized the fragmentation patterns of the main five types of compounds and successfully screened and identified 32 chemical constituents in Rhizoma Anemarrhenae. The components included 18 steroidal saponins, 6 flavonoids, 4 phenylpropanoids, 2 alkaloids, and 2 benzophenones. The method established in this study provided necessary data for the study on the pharmacological effects of Rhizoma Anemarrhenae and also provided the basis for the chemical analysis and quality control of TCMs to promote the development of a method for chemical research on TCMs.
Collapse
|
12
|
Wei Z, Dong X, Zhang H, Gao S, Shi W, Yang F, Dong X. Hydrophilic interaction and reversed-phase ultra-performance liquid chromatography TOF-MS for metabolomic analysis of Veratrum nigrum-induced cardiotoxicity. Biomed Chromatogr 2017; 31. [PMID: 28544073 DOI: 10.1002/bmc.4011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 05/02/2017] [Accepted: 05/17/2017] [Indexed: 11/07/2022]
Abstract
The acute cardiotoxicity induced by Veratrum nigrum (VN) is explored by analyzing heart tissue metabolic profiles in mouse models and applying reversed-phase liquid chromatography mass spectrometry and hydrophilic interaction liquid chromatography mass spectrometry that are based on ultra-high-performance liquid chromatography quadrupole time-of-flight mass spectrometry. An animal model of acute heart injury was established in mice via intra-gastric administration of VN. Then, electrocardiogram and echocardiograph monitoring of cardiac function and pathological examination were performed on mice in both the control and VN groups, and it was verified that acute heart injury was caused. Meanwhile, comparing the results of the control and VN groups, we detected 36 differential endogenous metabolites of heart tissue, including taurine, riboflavin, purine and lipids, which are related to many possible pathways such as purine metabolism, taurine and hypotaurine metabolism and energy metabolism. Our study provides a scientific approach for evaluating and revealing the mechanisms of VN-induced cardiotoxicity via the metabolomic strategy.
Collapse
Affiliation(s)
- Ziheng Wei
- Faculty of Naval Medicine, Second Military Medical University, Shanghai, People's Republic of China
| | - Xu Dong
- Faculty of Naval Medicine, Second Military Medical University, Shanghai, People's Republic of China
| | - Hanzhe Zhang
- Brigade of Undergraduate Student, Second Military Medical University, Shanghai, People's Republic of China
| | - Songyan Gao
- School of Pharmacy, Second Military Medical University, Shanghai, People's Republic of China
| | - Wei Shi
- Department of Gynaecology and Obstetrics, Jinan Central Hospital, Shandong University, Jinan, Shandong, People's Republic of China
| | - Feng Yang
- School of Pharmacy, Second Military Medical University, Shanghai, People's Republic of China
| | - Xin Dong
- School of Pharmacy, Second Military Medical University, Shanghai, People's Republic of China
| |
Collapse
|