1
|
Singh PK, Kumar BS, Nandi S, Gupta PSP, Mondal S. Genistein effect in cultured ovine ovarian granulosa cells. J Biochem Mol Toxicol 2024; 38:e23697. [PMID: 38578078 DOI: 10.1002/jbt.23697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/18/2024] [Accepted: 03/12/2024] [Indexed: 04/06/2024]
Abstract
Genistein, an isoflavone has the potential to mimic, augment, or dysregulate the steroid hormone production pathways. We hypothesized that genistein affects the granulosa cell (GCs) functions through a series of biochemical, molecular, and genomic cascades. The present study was conducted to evaluate the impact of genistein exposure on GCs viability, apoptosis, and steroidogenesis. The present study involved 3/5 days of exposure to genistein on GCs collected from abattoir-derived ovine ovaries at doses of 0, 1, 10, 25, 50, and 100 µM. The harvested GCs were used for growth, cytotoxicity, and gene expression studies related to apoptosis, growth, and steroidogenesis. We observed that genistein had both stimulatory at 10 and 25 µM levels as well as inhibitory effects at 50 and 100 µM levels on the growth and proliferation of GCs. Genistein significantly decreased the levels of 17β-estradiol at higher exposure (50 and 100 µM), whereas the progesterone level increased significantly as the genistein exposure increased. Additionally, genistein could also alter the mRNA expression of the steroidogenic receptor, enzymes, proteins, and growth-related genes suggesting that genistein could potentially alter the steroidogenic pathways. We conclude that genistein can interfere with cell survival and steroidogenesis by exhibiting a dose-dependent biphasic response on the viability, growth-related parameters, and the synthesis of 17β-estradiol in the cultured GCs.
Collapse
Affiliation(s)
- Poonam K Singh
- ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru, India
- Department of Biotechnology, Jain University, Bengaluru, India
| | - Bogapathi Sampath Kumar
- ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru, India
- Veterinary College, KVAFSU, Bengaluru, India
| | - Sumanta Nandi
- ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru, India
| | - Paluru S P Gupta
- ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru, India
| | - Sukanta Mondal
- ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru, India
| |
Collapse
|
2
|
Flaxseed Ethanol Extracts’ Antitumor, Antioxidant, and Anti-Inflammatory Potential. Antioxidants (Basel) 2022; 11:antiox11050892. [PMID: 35624757 PMCID: PMC9137875 DOI: 10.3390/antiox11050892] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/28/2022] [Indexed: 02/04/2023] Open
Abstract
The antitumoral, antioxidant, and anti-inflammatory effects of flaxseed ethanol extract was screened. Phytochemical analysis was performed by measuring the total phenolic content and by HPLC-DAD-ESI MS. In vitro antiproliferative activity was appreciated by MMT test of four adenocarcinomas and two normal cell lines. In vitro, antioxidant activity was evaluated by DPPH, FRAP, H2O2, and NO scavenging tests. The in vivo growth inhibitory activity against Ehrlich ascites carcinoma (EAC) in female BALB/c mice was determined using the trypan blue test. In EAC mice serum and ascites total oxidative status, total antioxidant reactivity, oxidative stress index, malondialdehyde, total thiols, total nitrites, 3-nitrotyrosine, and NFkB were measured. The phytochemical analysis found an significant content of phenols, with lignans having the highest concentration. The extract had an significant in vitro antioxidant effect and different inhibitory effects on different cell lines. After treatment of EAC mice with flaxseeds extract, body weight, ascites volume and viable tumour cell count, serum and ascites oxidative stress, and inflammatory markers decreased significantly. The ethanol flaxseeds extract has potential antiproliferative activity against some ovary and endometrial malignant cells and EAC. This effect can be attributed to the phenols content, and its antioxidant and anti-inflammatory activity.
Collapse
|
3
|
He S, Chen R, Peng L, Jiang Z, Liu H, Chen Z, Zhao T, Orgah JO, Ren J, Zhang P, Wang Y, Gao X, Zhu Y. Differential action of pro-angiogenic and anti-angiogenic components of Danhong injection in ischemic vascular disease or tumor models. Chin Med 2022; 17:4. [PMID: 34983572 PMCID: PMC8725508 DOI: 10.1186/s13020-021-00557-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/15/2021] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE We investigate the chemical basis and mechanism of angiogenesis regulation by a multicomponent Chinese medicine Danhong injection (DHI). METHODS DHI was fractionated and screened for angiogenesis activities by in vitro tube formation and migration assays. The composition of DHI components was determined by UPLC. The effects of the main active monomers on angiogenesis-related gene and protein expression in endothelial cells were determined by qPCR and Western blotting analyses. Mouse hind limb ischemia and tumor implant models were used to verify the angiogenesis effects in vivo by Laser Doppler and bioluminescent imaging, respectively. RESULTS Two distinct chemical components, one promoting (pro-angiogenic, PAC) and the other inhibiting (anti-angiogenic, AAC) angiogenesis, were identified in DHI. PAC enhanced angiogenesis and improved recovery of ischemic limb perfusion while AAC reduced Lewis lung carcinoma growth in vivo in VEGFR-2-Luc mice. Among the PAC or AAC monomers, caffeic acid and rosmarinic acid upregulated TSP1 expression and downregulated KDR and PECAM expression. Caffeic acid and rosmarinic acid significantly decreased while protocatechuic aldehyde increased CXCR4 expression, which are consistent with their differential effects on EC migration. CONCLUSIONS DHI is capable of bi-directional regulation of angiogenesis in disease-specific manner. The pro-angiogenesis activity of DHI promotes the repair of ischemic vascular injury, whereas the anti-angiogenesis activity inhibits tumor growth. The active pro- and anti-angiogenesis activities are composed of unique chemical combinations that differentially regulate angiogenesis-related gene networks.
Collapse
Affiliation(s)
- Shuang He
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, China.,Research and Development Center of Traditional Chinese Medicine, Tianjin International Joint Academy of Biomedicine, TEDA, 220 Dongting Road, Tianjin, 300457, China
| | - Rongrong Chen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, China.,Research and Development Center of Traditional Chinese Medicine, Tianjin International Joint Academy of Biomedicine, TEDA, 220 Dongting Road, Tianjin, 300457, China
| | - Li Peng
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, China.,Research and Development Center of Traditional Chinese Medicine, Tianjin International Joint Academy of Biomedicine, TEDA, 220 Dongting Road, Tianjin, 300457, China
| | - Zhenzuo Jiang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, China.,Research and Development Center of Traditional Chinese Medicine, Tianjin International Joint Academy of Biomedicine, TEDA, 220 Dongting Road, Tianjin, 300457, China
| | - Haixin Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, China.,Research and Development Center of Traditional Chinese Medicine, Tianjin International Joint Academy of Biomedicine, TEDA, 220 Dongting Road, Tianjin, 300457, China
| | - Zihao Chen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, China.,Research and Development Center of Traditional Chinese Medicine, Tianjin International Joint Academy of Biomedicine, TEDA, 220 Dongting Road, Tianjin, 300457, China
| | - Tiechan Zhao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, China.,Research and Development Center of Traditional Chinese Medicine, Tianjin International Joint Academy of Biomedicine, TEDA, 220 Dongting Road, Tianjin, 300457, China
| | - John Owoicho Orgah
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, China.,Research and Development Center of Traditional Chinese Medicine, Tianjin International Joint Academy of Biomedicine, TEDA, 220 Dongting Road, Tianjin, 300457, China
| | - Jie Ren
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, China.,Research and Development Center of Traditional Chinese Medicine, Tianjin International Joint Academy of Biomedicine, TEDA, 220 Dongting Road, Tianjin, 300457, China
| | - Peng Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, China.,Research and Development Center of Traditional Chinese Medicine, Tianjin International Joint Academy of Biomedicine, TEDA, 220 Dongting Road, Tianjin, 300457, China
| | - Yuefei Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, China.,Research and Development Center of Traditional Chinese Medicine, Tianjin International Joint Academy of Biomedicine, TEDA, 220 Dongting Road, Tianjin, 300457, China
| | - Xiumei Gao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, China.,Research and Development Center of Traditional Chinese Medicine, Tianjin International Joint Academy of Biomedicine, TEDA, 220 Dongting Road, Tianjin, 300457, China
| | - Yan Zhu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, China. .,Research and Development Center of Traditional Chinese Medicine, Tianjin International Joint Academy of Biomedicine, TEDA, 220 Dongting Road, Tianjin, 300457, China.
| |
Collapse
|
5
|
Wang Y, Xie W, Hou M, Tian J, Zhang X, Ren Q, Huang Y, Chen J. Calycosin stimulates the proliferation of endothelial cells, but not breast cancer cells, via a feedback loop involving RP11-65M17.3, BRIP1 and ERα. Aging (Albany NY) 2021; 13:11026-11042. [PMID: 33647882 PMCID: PMC8109108 DOI: 10.18632/aging.202641] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 11/03/2020] [Indexed: 12/27/2022]
Abstract
It is widely accepted that estrogen can be replaced by phytoestrogens to treat postmenopausal cardiovascular disease and possibly decrease the risk of breast cancer. However, few studies have investigated the effects of phytoestrogens on vascular endothelial cells (ECs). In the present study, we show that the phytoestrogen calycosin (20 μM) stimulated the proliferation of ECs (HUVECs and HMEC-1) but inhibited the growth of breast cancer cells (BCCs) expressing ERα (MCF-7 and T47D). Here we provide evidence for the presence of a positive feedback loop between ERα and long noncoding RNA RP11-65M17.3 in both normal and cancer cells, and calycosin stimulated this feedback loop in ECs but decreased RP11-65M17.3 expression in BCCs. Subsequently, the calycosin-induced activation of this loop decreased the expression of the target of BRIP1 (BRCA1 interacting protein C-terminal helicase 1), increased the phosphorylation of Akt and ERK1/2, and finally inhibited the cleavage of PARP-1 in ECs. In nude mice bearing MCF-7 xenografts, calycosin did not stimulate tumor growth as strongly as 17β-estradiol. Together, these results suggest that calycosin promotes the proliferation of ECs, and notable inhibits the growth of BCCs. A possible reason for these results is the involvement of a feedback loop between ERα and RP11-65M17.3.
Collapse
Affiliation(s)
- Yong Wang
- Key Laboratory of Tumor Immunology and Microenvironmental Regulation of Guangxi, Guilin Medical University, Guilin 541004, Guangxi, China
| | - Wei Xie
- Key Laboratory of Tumor Immunology and Microenvironmental Regulation of Guangxi, Guilin Medical University, Guilin 541004, Guangxi, China
| | - Mengyue Hou
- Key Laboratory of Tumor Immunology and Microenvironmental Regulation of Guangxi, Guilin Medical University, Guilin 541004, Guangxi, China
| | - Jing Tian
- Department of Physiology, Guilin Medical University, Guilin 541004, Guangxi, China
| | - Xing Zhang
- Key Laboratory of Tumor Immunology and Microenvironmental Regulation of Guangxi, Guilin Medical University, Guilin 541004, Guangxi, China
| | - Qianyao Ren
- Key Laboratory of Tumor Immunology and Microenvironmental Regulation of Guangxi, Guilin Medical University, Guilin 541004, Guangxi, China
| | - Yue Huang
- Department of Breast and Thyroid Surgery, First Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China
| | - Jian Chen
- Key Laboratory of Tumor Immunology and Microenvironmental Regulation of Guangxi, Guilin Medical University, Guilin 541004, Guangxi, China
| |
Collapse
|
6
|
Ji B, Guo W, Ma H, Xu B, Mu W, Zhang Z, Amat A, Cao L. Isoliquiritigenin suppresses IL-1β induced apoptosis and inflammation in chondrocyte-like ATDC5 cells by inhibiting NF-κB and exerts chondroprotective effects on a mouse model of anterior cruciate ligament transection. Int J Mol Med 2017; 40:1709-1718. [PMID: 29039445 PMCID: PMC5716454 DOI: 10.3892/ijmm.2017.3177] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 09/28/2017] [Indexed: 11/05/2022] Open
Abstract
Isoliquiritigenin (ISL), a natural flavonoid extracted from licorice, has been demonstrated to exert attenuation of the nuclear factor-κB (NF-κB) signaling pathway and anti-inflammatory activity in a wide variety of cells. In the present study, the authors first evaluated the effects of ISL on cartilage degeneration in interleukin-1β (IL-1β)-stimulated chondrocyte-like ATDC5 cells and in a mouse model of osteoarthritis (OA). The data of a cell counting kit-8 and flow cytometry assay indicated that ISL suppressed the inhibitory effect of IL-1β on cell viability. The mRNA and protein expression levels of cyclooxygenase-2 and matrix metalloproteinase-13 were significantly decreased, while the expression of collagen II was increased, as indicated by RT-qPCR and western blot analysis following the chondrocyte-like ATDC5 cells were co-intervened with IL-1β and ISL for 48 h. Also, ISL attenuated protein expressions level of pro-apoptotic Bax, cleaved-caspase-3 and cleaved-caspase-9 and promoted expression of anti-apoptotic Bcl-2. Moreover, ISL inhibited NF-κB p65 phosphorylation induced by IL-1β. In addition, ISL also increased improved the thickness of hyaline cartilage and the production of proteoglycans in the cartilage matrix in a mouse OA model. These results indicated that ISL exerted anti-inflammatory and anti-apoptotic effects on IL-1β-stimulated chondrocyte-like ATDC5 cells, which may be associated with the downregulation of the NF-κB signaling pathway. In this way, the data supported the conclusion that ISL may be a novel potential preventive agent suitable for use in OA therapy.
Collapse
Affiliation(s)
- Baochao Ji
- Department of Orthopaedics, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Wentao Guo
- Department of Orthopaedics, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Hairong Ma
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, Xinjiang 830054, P.R. China
| | - Boyong Xu
- Department of Orthopaedics, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Wenbo Mu
- Department of Orthopaedics, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Zhendong Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Abdusami Amat
- Department of Orthopaedics, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Li Cao
- Department of Orthopaedics, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| |
Collapse
|