1
|
Cui M, Tian J, Sun J, Li X, Xu Q, Ma J, Liu K, Liu K. Isolation, Structural Analysis and Anti-Inflammatory Activity of a Polysaccharide from Ilex cornuta Fruits. Chem Biodivers 2022; 19:e202200084. [PMID: 35484695 DOI: 10.1002/cbdv.202200084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/07/2022] [Indexed: 11/12/2022]
Abstract
In the present study, a polysaccharide from Ilex cornuta fruits (LCFP-3) was obtained by hot water extraction, Diethyaminoethyl cellulose-52 (DEAE-52) chromatography column and Sephadex G-100 gel column purification. Its structural characteristics were further explored using high performance anion exchange chromatography (HPAEC), gas chromatography and mass spectrometry (GC/MS), scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy and nuclear magnetic resonance (NMR) spectroscopy. Monosaccharide composition analysis revealed LCFP-3 contained mainly Galactose (31.92 %), Arabinose (25.87 %) and Galacturonic acid (23.35 %) while small percentage of Rhamnose, Glucose, Mannose and Xylose. Chemical composition analysis showed that the total sugar content of LCFP-3 was 90.31 % and the protein content was 0.246 %. Gel permeation chromatography (GPC) analysis showed that its average molecular weight was 41.199 kDa. Structural analysis showed that LCFP-3 may be composed of residues, T-α-Arap, T-α-Rhap, 1,3-α-Arap, 1,4-α-Arap, T-β-Galp, 1,4-α-GalpA(OMe), 1,4-β-Glcp, 1,3-β-Galp, 1,3,6-β-Manp, 1,6-β-Galp, 1,3,4-β-GalpA, 1,4,6-β-Manp, 1,3,6-β-Glcp, 1,2,3,4-α-Xylp. The anti-inflammatory activity of LCFP-3 was evaluated using lipopolysaccharide (LPS)-induced RAW246.7 macrophages. The results showed that 1-200 μg/mL LCFP-3 could dose-dependently protect against LPS-induced toxicity and 1 μg/mL LCFP-3 could significantly inhibit LPS-induced NO production. Therefore, LCFP-3 exerted an anti-inflammatory activity and has great potential as a functional ingredient.
Collapse
Affiliation(s)
- Mingxiao Cui
- Department of Biopharmaceutics, College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Junya Tian
- Department of Biopharmaceutics, College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Jun Sun
- Department of Biopharmaceutics, College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Xinyuan Li
- Department of Biopharmaceutics, College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Qiaohong Xu
- Department of Biopharmaceutics, College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Jian Ma
- Department of Biopharmaceutics, College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Kehai Liu
- Department of Biopharmaceutics, College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China.,Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, 201306, China
| | - Kewu Liu
- Mudanjiang Branch of Heilongjiang Academy of Forestry, Heilongjiang, 157010, China
| |
Collapse
|
2
|
Preventive Effects of Ilex Cornuta Aqueous Extract on High-Fat Diet-Induced Fatty Liver of Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7183471. [PMID: 35432557 PMCID: PMC9010189 DOI: 10.1155/2022/7183471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 03/09/2022] [Indexed: 12/26/2022]
Abstract
Objective To investigate the preventive effects of Ilex cornuta aqueous extract (ICAE) on high-fat diet (HFD)-induced fatty liver of mice and its mechanisms. Materials and Methods Twenty-six male KM (Kunming) mice were divided into 3 groups, including the control group (n = 9), fed with normal diet; HFD group (n = 9), fed with HFD; ICAE + HFD group (n = 8), fed with HFD and administered with ICAE (3 g·kg-1·d-1) at the same time for 10 weeks. Body weight, liver weight, intra-abdominal and subcutaneous fat weight, serum triglyceride (TG), total cholesterol (TC), and blood glucose were determined to evaluate the preventive effects of ICAE on obesity. The average 24 h food consumption of the mice was monitored for 5 times in the 9th week of the experiment to investigate the effects of ICAE on food intake. Serum alanine transaminase (ALT) and aspartate aminotransferase (AST) were assayed to observe the influences of HFD and ICAE on liver function. HE staining was adopted to observe the influence of ICAE on the morphology of adipose tissue and liver tissue. Hepatic TG and TC content assay and oil red O staining were used to evaluate the influences of ICAE on HFD-induced fatty liver, and the protein expression of peroxisome proliferator-activated receptors γ (PPARγ) and adipose differentiation-related protein (ADRP) in liver were examined by immunoblotting. Results ICAE treatment significantly reduced the increase of body weight, intra-abdominal, and subcutaneous fat and liver weight induced by HFD (P < 0.001), but has no influence on food intake; ICAE treatment attenuated the elevation of serum TG, TC, and glucose, as well as serum ALT and AST (P < 0.01, P < 0.05, P < 0.001) and dramatically decreased the content of TG in liver (P < 0.01), but has no influence on hepatic TC content. HE staining and oil red O staining showed that ICAE significantly reduced HFD-induced white adipocyte hypertrophy and significantly inhibited lipid accumulation in liver. Immunoblotting showed that the protein levels of PPARγ and ADRP were significantly increased by HFD induction, which can be dramatically reduced by ICAE treatment (P < 0.05, P < 0.0001). Conclusion ICAE has preventive effects on HFD-induced obesity and fatty liver in mice, exerted beneficial effects upon HFD-induced hepatic injury. The preventive effects of ICAE on fatty liver are concerned with the downregulation of PPARγ and ADRP protein expression in liver.
Collapse
|
3
|
Yu SJ, Yu ZP, Wang YY, Bao J, Yuan T, Yu JH, Zhang H. Structural characterization and biological evaluation of chemical constituents from Ilex cornuta. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2020; 22:316-328. [PMID: 30821481 DOI: 10.1080/10286020.2019.1570160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 01/11/2019] [Indexed: 06/09/2023]
Abstract
One new ursane-type triterpenoid (1), one new ursane-type triterpenoid glycoside (2), and one new oleanane-type triterpenoid glycoside (3), along with 20 known compounds, were isolated from the leaves of Ilex cornuta. The structures of these natural products were elucidated on the basis of detailed spectroscopic analyses and chemical derivation. Our biological evaluation established that selective compounds showed moderate to significant antioxidant activities in the 1,1-diphenyl-2-picrylhydrazyl and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) methods.
Collapse
Affiliation(s)
- Shu-Juan Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Zhi-Pu Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Yin-Yin Wang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Jie Bao
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Tao Yuan
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Jin-Hai Yu
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Hua Zhang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| |
Collapse
|
4
|
Natural CAC chemopreventive agents from Ilex rotunda Thunb. J Nat Med 2019; 73:456-467. [PMID: 30758715 DOI: 10.1007/s11418-019-01281-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 01/17/2019] [Indexed: 12/11/2022]
Abstract
Colitis-associated cancer (CAC) is one of the most serious complications of inflammatory bowel disease. The pathogenesis of CAC is complicated and so far elusive, and the anti-inflammatory effect does not assure CAC preventive activity, making it difficult to discover CAC preventive drugs. In this study, we report the CAC preventive effect of the ethyl acetate (EIR) of Ilex rotunda Thunb., a traditional Chinese herbal medicine being clinically used to treat intestinal disease. We also report the results of screening for CAC preventive agents from EIR via a nuclear factor-kappa B (NF-κB) translocation model in Caco2 cells, since activated NF-κB can be used by tumor cells at the early stage of tumorigenesis. Twenty-four components were isolated from EIR and identified by multiple chromatography and spectral analysis. MTT experiments in IEC-6 and RAW264.7 cells showed that all 24 compounds were toxic-free to normal cell lines. Furthermore, compound rotundic acid (RA) (19) exhibited an inhibitory effect on LPS-induced NF-κB translocation in Caco2 cells. Moreover, RA did not induce apoptosis in Caco2 tumor cells while possessing an anti-inflammatory effect both in immune and intestinal epithelium cells (RAW264.7 and IEC-6 cells, respectively). Removing RA (19) and its 28-O-glucopyranoside (17) from EIR definitely undermined the in vivo CAC preventive activity of EIR. Therefore, the current study suggested that RA (19) could be a potential therapeutic agent against CAC.
Collapse
|