1
|
Johnson JB, Mani JS, Broszczak D, Prasad SS, Ekanayake CP, Strappe P, Valeris P, Naiker M. Hitting the sweet spot: A systematic review of the bioactivity and health benefits of phenolic glycosides from medicinally used plants. Phytother Res 2021; 35:3484-3508. [PMID: 33615599 DOI: 10.1002/ptr.7042] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 02/01/2023]
Abstract
Phenolic acid and flavonoid glycosides form a varied class of naturally occurring compounds, characterised by high polarity-resulting from the glycone moiety-and the presence of multiple phenol functionalities, which often leads to strong antioxidant activity. Phenolic glycosides, and in particular flavonoid glycosides, may possess strong bioactive properties with broad spectrum activity. This systematic literature review provides a detailed overview of 28 studies examining the biological activity of phenolic and flavonoid glycosides from plant sources, highlighting the potential of these compounds as therapeutic agents. The activity of glycosides depends upon the biological activity type, identity of the aglycone and the identity and specific location of the glycone moiety. From studies reporting the activity of both glycosides and their respective aglycones, phenolic glycosides appear to generally be a storage/reserve pool of precursors of more bioactive compounds. The glycosylated compounds are likely to be more bioavailable compared to their aglycone forms, due to the presence of the sugar moieties. Hydrolysis of the glycoside in the in vivo environment would release the free aglycone, potentiating their biological activity. However, further high-quality studies are needed to firmly establish the clinical efficacy of glycosides from many of the plant species studied.
Collapse
Affiliation(s)
- Joel B Johnson
- School of Health, Medical and Applied Sciences, CQUniversity, North Rockhampton, Queensland, Australia.,Centre for Indigenous Health Equity Research, CQUniversity, North Rockhampton, Queensland, Australia
| | - Janice S Mani
- School of Health, Medical and Applied Sciences, CQUniversity, North Rockhampton, Queensland, Australia.,Centre for Indigenous Health Equity Research, CQUniversity, North Rockhampton, Queensland, Australia
| | - Daniel Broszczak
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Shirtika S Prasad
- Faculty of Science, Technology and Engineering, The University of the South Pacific, Suva, Fiji
| | - Charitha P Ekanayake
- Department of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Padraig Strappe
- School of Health, Medical and Applied Sciences, CQUniversity, North Rockhampton, Queensland, Australia
| | - Peter Valeris
- Shimadzu Scientific Instruments (Oceania) Pty Ltd, Rydalmere, New South Wales, Australia
| | - Mani Naiker
- School of Health, Medical and Applied Sciences, CQUniversity, North Rockhampton, Queensland, Australia.,Centre for Indigenous Health Equity Research, CQUniversity, North Rockhampton, Queensland, Australia
| |
Collapse
|
2
|
Ahn AV, dos Santos JHZ. Quantitative GC-FID and UHPLC-DAD Evaluation of Bioactive Compounds Extracted from Ginkgo biloba. CURR ANAL CHEM 2020. [DOI: 10.2174/1573411015666191010124224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
The official compendium of the quantification of ginkgo flavonoids from
Ginkgo biloba extract has been proposed using HPLC. The drawbacks of this technique appear to be
due to the restricted efficiency in terms of the recovery results and suitability of the system for the
quantification of these compounds. This study investigated the potential advantages and limitations
of the development of efficient extraction methods for the recovery of flavonol glycosides (quercetin,
kaempferol and isorhamnetin) and terpene trilactones (bilobalide, ginkgolide A, ginkgolide B and
ginkgolide C) using extraction, quantification and detection techniques, namely, GC-FID and
UHPLC-DAD, which are alternatives to those techniques available in the literature.
Methods:
Two different extraction methodologies have been developed for the determination of flavonoids
(quercetin, kaempferol and isorhamnetin) and terpene trilactones (bilobalide, ginkgolide A,
ginkgolide B and ginkgolide C) using ultra-high-pressure liquid chromatography coupled to a diode
array detector and gas chromatography coupled to a flame ionization detector.
Results:
In this study, the Ginkgo biloba extract mass, hydrolysis preparation method (with or without
reflux), and volume of the extraction solution seemed to affect the ginkgo flavonoid recovery.
The UHPLC-based method exhibited higher extraction efficiency for ginkgo flavonoid quantification
compared to the pharmacopoeial method. The developed method exhibited higher extraction efficiency
for terpene quantification compared to the previous method that used extractive solution without
pH adjustment, with less time of extraction and less amount of the sample and organic solvent
aliquots.
Conclusion:
The UHPLC and GC analysis methods established in this study are both effective and
efficient. These methods may improve the quality control procedures for ginkgo extract and commercial
products available in today´s natural health product market. The results indicate that redeveloped
extraction methods can be a viable alternative to traditional extraction methods.
Collapse
Affiliation(s)
- Alessandra von Ahn
- Instituto de Quimica, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves, 9500, Porto Alegre, CEP 91500-000, Brazil
| | - João Henrique Z. dos Santos
- Instituto de Quimica, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves, 9500, Porto Alegre, CEP 91500-000, Brazil
| |
Collapse
|
3
|
Li YY, Lu XY, Sun JL, Wang QQ, Zhang YD, Zhang JB, Fan XH. Potential hepatic and renal toxicity induced by the biflavonoids from Ginkgo biloba. Chin J Nat Med 2020; 17:672-681. [PMID: 31526502 DOI: 10.1016/s1875-5364(19)30081-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Indexed: 02/08/2023]
Abstract
Evidence continues to grow on potential health risks associated with Ginkgo biloba and its constituents. While biflavonoid is a subclass of the flavonoid family in Ginkgo biloba with a plenty of pharmacological properties, the potential toxicological effects of biflavonoids remains largely unknown. Thus, the aim of this study was to investigate the in vitro and in vivo toxicological effects of the biflavonoids from Ginkgo biloba (i.e., amentoflavone, sciadopitysin, ginkgetin, isoginkgetin, and bilobetin). In the in vitro cytotoxicity test, the five biflavonoids all reduced cell viability in a dose-dependent manner in human renal tubular epithelial cells (HK-2) and human normal hepatocytes (L-02), indicating they might have potential liver and kidney toxicity. In the in vivo experiments, after intragastrical administration of these biflavonoids at 20 mg·kg-1·d-1 for 7 days, serum biochemical analysis and histopathological examinations were performed. The activity of alkaline phosphatase was significantly increased after all the biflavonoid administrations and widespread hydropic degeneration of hepatocytes was observed in ginkgetin or bilobetin-treated mice. Moreover, the five biflavonoids all induced acute kidney injury in treated mice and the main pathological lesions were confirmed to the tubule, glomeruli, and interstitium injuries. As the in vitro and in vivo results suggested that these biflavonoids may be more toxic to the kidney than the liver, we further detected the mechanism of biflavonoids-induced nephrotoxicity. The increased TUNEL-positive cells were detected in kidney tissues of biflavonoids-treated mice, accompanied by elevated expression of proapoptotic protein BAX and unchanged levels of antiapoptotic protein BCL-2, indicating apoptosis was involved in biflavonoids-induced nephrotoxicity. Taken together, our results suggested that the five biflavonoids from Ginkgo biloba may have potential hepatic and renal toxicity and more attentions should be paid to ensure Ginkgo biloba preparations safety.
Collapse
Affiliation(s)
- Yun-Ying Li
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiao-Yan Lu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jia-Li Sun
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qing-Qing Wang
- Zhejiang University - Wanbangde Pharmaceutical Group Joint Research Center for Chinese Medicine Modernization, Hangzhou 310058, China
| | - Yao-Dan Zhang
- Zhejiang University - Wanbangde Pharmaceutical Group Joint Research Center for Chinese Medicine Modernization, Hangzhou 310058, China
| | - Jian-Bing Zhang
- Zhejiang University - Wanbangde Pharmaceutical Group Joint Research Center for Chinese Medicine Modernization, Hangzhou 310058, China
| | - Xiao-Hui Fan
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|