1
|
Shang M, Wang J, Dai G, Zheng J, Liao B, Wang J, Duan B. Comparative analysis of chloroplast genome and new insights into phylogenetic relationships of Ajuga and common adulterants. FRONTIERS IN PLANT SCIENCE 2023; 14:1251829. [PMID: 37954994 PMCID: PMC10634298 DOI: 10.3389/fpls.2023.1251829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 10/11/2023] [Indexed: 11/14/2023]
Abstract
Introduction The potential contamination of herbal medicinal products poses a significant concern for consumer health. Given the limited availability of genetic information concerning Ajuga species, it becomes imperative to incorporate supplementary molecular markers to enhance and ensure accurate species identification. Methods In this study, the chloroplast (cp) genomes of seven species of the genus Ajuag were sequenced, de novo assembled and characterized. Results exhibiting lengths ranging from 150,342 bp to 150,472 bp, encompassing 86 - 88 protein-coding genes (PCGs), 35 - 37 transfer RNA, and eight ribosomal RNA. The repetitive sequences, codon uses, and cp genomes of seven species were highly conserved, and PCGs were the reliable molecular markers for investigating the phylogenetic relationship within the Ajuga genus. Moreover, four mutation hotspot regions (accD-psaI, atpH-atpI, ndhC-trnV(UAC), and ndhF-rpl23) were identified within cp genomes of Ajuga, which could help distinguish A. bracteosa and its contaminants. Based on cp genomes and PCGs, the phylogenetic tree preliminary confirmed the position of Ajuga within the Lamiaceae family. It strongly supported a sister relationship between Subsect. Genevense and Subsect. Biflorae, suggesting the merger of Subsect. Biflorae and Subsect. Genevenses into one group rather than maintaining separate categorizations. Additionally, molecular clock analysis estimated the divergence time of Ajuga to be around 7.78 million years ago. Discussion The species authentication, phylogeny, and evolution analyses of the Ajuga species may benefit from the above findings.
Collapse
Affiliation(s)
- Mingyue Shang
- College of Pharmaceutical Science, Dali University, Dali, China
| | - Jiale Wang
- College of Pharmaceutical Science, Dali University, Dali, China
| | - Guona Dai
- College of Pharmaceutical Science, Dali University, Dali, China
| | - Jiamei Zheng
- College of Pharmaceutical Science, Dali University, Dali, China
| | - Binbin Liao
- College of Pharmaceutical Science, Dali University, Dali, China
| | - Jing Wang
- College of Pharmaceutical Science, Dali University, Dali, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Baozhong Duan
- College of Pharmaceutical Science, Dali University, Dali, China
| |
Collapse
|
2
|
Patil S, Imran M, Jaquline RSM, Aeri V. Standardization of Euphorbia tithymaloides (L.) Poit. (Root) by Conventional and DNA Barcoding Methods. ACS OMEGA 2023; 8:29324-29335. [PMID: 37599932 PMCID: PMC10433337 DOI: 10.1021/acsomega.3c02543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023]
Abstract
Adulteration and substitution of medicinal plants have become a matter of great concern in recent years. Euphorbia tithymaloides is one such medicinal plant that has gained importance but is often confused with other plants of the same species. In order to address this issue, this study aimed to conduct a conventional and molecular pharmacognostic study for the identification of the root of E. tithymaloides. The root of the plant was studied for the macroscopic observations, and then, the root was ground into coarse powder for microscopic studies and to determine the physiochemical properties. The powder was subjected to extraction with solvents such as ethanol, ethanol/water (1:1), hexane, and ethyl acetate. The extracts were then used for qualitative and quantitative (phenol, alkaloids, and flavonoids) phytochemical analysis. The molecular study was performed with the DNA barcoding technique. The DNA was extracted from the root of the plant, and its purity was examined by gel electrophoresis (1% w/v). The DNA was then amplified using an Applied Biosystems 2720 thermal cycler for the rbcL, matK, and ITS primers. The amplified primers were sequenced with a 3130 Genetic Analyzer, and the generated sequences were searched for similarity in the GenBank Database using the nucleotide BLAST analysis. The micro- and macroscopic studies revealed the morphological and organoleptic characters as well as the presence of medullary rays, fiber, cork, sclereids, parenchymal cells, and scalariform vessels. The physiochemical properties were found within the limit. The phytochemical analysis revealed the presence of terpenoids, flavonoids, saponins, and alkaloids. In addition, the alkaloidal content was high in the ethanol extract (63.04 ± 3.08 mg At E/g), while the phenol content was high in the hexane extract (10.26667 ± 1.77 mg At E/g), and the flavonoid content was high in the ethyl acetate extract (41.458 ± 1.33 mg At E/g). After the BLAST analysis from the GenBank database, the rbcL, ITS, and matK primers showed a similarity percentage of 99.83, 99.84, and 100. The phylogenetic tree for the species closest to each primer was generated using the MEGA 6 software. The matK loci had the highest percentage similar to the rbcL and ITS loci, indicating that the matK loci can be used to identify the root of E. tithymaloides as a standalone. The results from this study can be used to establish a quality standard for E. tithymaloides that will ensure its quality and purity.
Collapse
Affiliation(s)
- Shital Patil
- Department
of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education
and Research, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India
| | - Mohd Imran
- Department
of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education
and Research, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India
| | - R. Sahaya Mercy Jaquline
- Department
of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education
and Research, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India
| | - Vidhu Aeri
- Department
of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education
and Research, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India
| |
Collapse
|
3
|
Fan Y, Jin Y, Ding M, Tang Y, Cheng J, Zhang K, Zhou M. The Complete Chloroplast Genome Sequences of Eight Fagopyrum Species: Insights Into Genome Evolution and Phylogenetic Relationships. FRONTIERS IN PLANT SCIENCE 2021; 12:799904. [PMID: 34975990 PMCID: PMC8715082 DOI: 10.3389/fpls.2021.799904] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 11/18/2021] [Indexed: 05/09/2023]
Abstract
Buckwheat (Fagopyrum genus, Polygonaceae), is an annual or perennial, herbaceous or semi-shrub dicotyledonous plant. There are mainly three cultivated buckwheat species, common buckwheat (Fagopyrum esculentum) is widely cultivated in Asia, Europe, and America, while Tartary buckwheat (F. tataricum) and F. cymosum (also known as F. dibotrys) are mainly cultivated in China. The genus Fagopyrum is taxonomically confusing due to the complex phenotypes of different Fagopyrum species. In this study, the chloroplast (cp) genomes of three Fagopyrum species, F. longistylum, F. leptopodum, F. urophyllum, were sequenced, and five published cp genomes of Fagopyrum were retrieved for comparative analyses. We determined the sequence differentiation, repeated sequences of the cp genomes, and the phylogeny of Fagopyrum species. The eight cp genomes ranged, gene number, gene order, and GC content were presented. Most of variations of Fagopyrum species cp genomes existed in the LSC and SSC regions. Among eight Fagopyrum chloroplast genomes, six variable regions (ndhF-rpl32, trnS-trnG, trnC, trnE-trnT, psbD, and trnV) were detected as promising DNA barcodes. In addition, a total of 66 different SSR (simple sequence repeats) types were found in the eight Fagopyrum species, ranging from 8 to 16 bp. Interestingly, many SSRs showed significant differences especially in some photosystem genes, which provided valuable information for understanding the differences in light adaptation among different Fagopyrum species. Genus Fagopyrum has shown a typical branch that is distinguished from the Rumex, Rheum, and Reynoutria, which supports the unique taxonomic status in Fagopyrum among the Polygonaceae. In addition, phylogenetic analysis based on the cp genomes strongly supported the division of eight Fagopyrum species into two independent evolutionary directions, suggesting that the separation of cymosum group and urophyllum group may be earlier than the flower type differentiation in Fagopyrum plants. The results of the chloroplast-based phylogenetic tree were further supported by the matK and Internal Transcribed Spacer (ITS) sequences of 17 Fagopyrum species, which may help to further anchor the taxonomic status of other members in the urophyllum group in Fagopyrum. This study provides valuable information and high-quality cp genomes for identifying species and evolutionary analysis for future Fagopyrum research.
Collapse
Affiliation(s)
- Yu Fan
- College of Agriculture, Guizhou University, Guiyang, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ya’nan Jin
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Life Sciences and Food Engineering, Inner Mongolia MINZU University, Tongliao, China
| | - Mengqi Ding
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yu Tang
- College of Food Science and Technology, Sichuan Tourism University, Chengdu, China
| | - Jianping Cheng
- College of Agriculture, Guizhou University, Guiyang, China
| | - Kaixuan Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Meiliang Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
4
|
Negi RK, Nautiyal P, Bhatia R, Verma R. rbcL, a potential candidate DNA barcode loci for aconites: conservation of himalayan aconites. Mol Biol Rep 2021; 48:6769-6777. [PMID: 34476739 DOI: 10.1007/s11033-021-06675-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 08/19/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Aconitum heterophyllum Wall. ex Royle and Aconitum balfourii Stapf, are two highly important, threatened medicinal plants of the Indian Himalayan Region. Root-tubers of Aconites have occupied an important place in Indian pharmacopoeia from very ancient times. India is a hub of the wild-collected medicinal herbs industry in Asia and these two aconites are known to have been heavily traded from the region in illicit manner. Prosecution of these illegal trading crimes is hampered by lack of pharma-forensic expertise and tools. METHODS AND RESULTS Present study was conducted to evaluate the discriminatory potential of rbcL, a Chloroplast based DNA barcode marker for the authentication of these two Himalayan Aconites. Fresh plant samples were collected from their natural distributional range as well as raw materials were procured from herbal market and a total of 32 sequences were generated for the rbcL region. Analysis demonstrated that rbcL region can successfully be used for authentication and importantly, both the aconites, were successfully discriminated by rbcL locus with high bootstrap support (> 50%). CONCLUSION Molecular markers could certainly be relied upon morphological and chemical markers being tissue specific, having a higher discriminatory power and not age dependent. Phylogenetic analysis using Maximum Likelihood Method revealed that the rbcL gene could successfully discriminate Himalayan Aconites to species level and have potential to be used in pharma-forensic applications as well as to curb illicit trade of these invaluable medicinal plants.
Collapse
Affiliation(s)
- Ranjana K Negi
- Systematic Botany Discipline, Forest Botany Division, Forest Research Institute, Dehradun, India.
| | - Pooja Nautiyal
- Systematic Botany Discipline, Forest Botany Division, Forest Research Institute, Dehradun, India
| | - Rajneesh Bhatia
- Systematic Botany Discipline, Forest Botany Division, Forest Research Institute, Dehradun, India
| | - Rakesh Verma
- Systematic Botany Discipline, Forest Botany Division, Forest Research Institute, Dehradun, India
| |
Collapse
|
5
|
Wang J, Zhao J, Yu W, Wang S, Bu S, Shi X, Zhang X. Rapid Identification of Common Poisonous Plants in China Using DNA Barcodes. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.698418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Toxic plants have been a major threat to public health in China. However, identification and tracing of poisoned species with traditional methods are unreliable due to the destruction of plant morphology by cooking and chewing. DNA barcoding is independent of environmental factors and morphological limitations, making it a powerful tool to accurately identify species. In our study, a total of 83 materials from 26 genera and 31 species of 13 families were collected and 13 plant materials were subjected to simulated gastric fluid digestion. Four markers (rbcL, trnH-psbA, matK, and ITS) were amplified and sequenced for all untreated and mock-digested samples. The effectiveness of DNA barcoding for the identification of toxic plants was assessed using Basic Local Alignment Search Tool (BLAST) method, PWG-Distance method, and Tree-Building (NJ) method. Except for the matK region, the amplification success rate of the remaining three regions was high, but the sequencing of trnH-psbA and ITS was less satisfactory. Meanwhile, matK was prone to be more difficult to amplify and sequence because of simulated gastric fluid. Among the three methods applied, BLAST method showed lower recognition rates, while PWG-Distance and Tree-Building methods showed little difference in recognition rates. Overall, ITS had the highest recognition rate among individual loci. Among the combined loci, rbcL + ITS had the highest species recognition rate. However, the ITS region may not be suitable for DNA analysis of gastric contents and the combination of loci does not significantly improve species resolution. In addition, identification of species to the genus level is sufficient to aid in the clinical management of most poisoning events. Considering primer versatility, DNA sequence quality, species identification ability, experimental cost and speed of analysis, we recommend rbcL as the best single marker for clinical identification and also suggest the BLAST method for analysis. Our current results suggest that DNA barcoding can rapidly identify and trace toxic species and has great potential for clinical applications. In addition, we suggest the creation of a proprietary database containing morphological, toxicological and molecular information to better apply DNA barcoding technology in clinical diagnostics.
Collapse
|
6
|
Shadrin DM. DNA Barcoding: Applications. RUSS J GENET+ 2021. [DOI: 10.1134/s102279542104013x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Marmitt DJ, Shahrajabian MH. Plant species used in Brazil and Asia regions with toxic properties. Phytother Res 2021; 35:4703-4726. [DOI: 10.1002/ptr.7100] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 02/26/2021] [Accepted: 03/09/2021] [Indexed: 12/30/2022]
Affiliation(s)
- Diorge Jônatas Marmitt
- Post‐graduate Program in Biotechnology Taquari Valley University – Univates Lajeado RS Brazil
| | | |
Collapse
|
8
|
Shen T, Yu H, Wang YZ. Discrimination of Gentiana and Its Related Species Using IR Spectroscopy Combined with Feature Selection and Stacked Generalization. Molecules 2020; 25:molecules25061442. [PMID: 32210010 PMCID: PMC7144467 DOI: 10.3390/molecules25061442] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/15/2020] [Accepted: 03/20/2020] [Indexed: 01/09/2023] Open
Abstract
Gentiana, which is one of the largest genera of Gentianoideae, most of which had potential pharmaceutical value, and applied to local traditional medical treatment. Because of the phytochemical diversity and difference of bioactive compounds among species, which makes it crucial to accurately identify authentic Gentiana species. In this paper, the feasibility of using the infrared spectroscopy technique combined with chemometrics analysis to identify Gentiana and its related species was studied. A total of 180 batches of raw spectral fingerprints were obtained from 18 species of Gentiana and Tripterospermum by near-infrared (NIR: 10,000-4000 cm-1) and Fourier transform mid-infrared (MIR: 4000-600 cm-1) spectrum. Firstly, principal component analysis (PCA) was utilized to explore the natural grouping of the 180 samples. Secondly, random forests (RF), support vector machine (SVM), and K-nearest neighbors (KNN) models were built while using full spectra (including 1487 NIR variables and 1214 FT-MIR variables, respectively). The MIR-SVM model had a higher classification accuracy rate than the other models that were based on the results of the calibration sets and prediction sets. The five feature selection strategies, VIP (variable importance in the projection), Boruta, GARF (genetic algorithm combined with random forest), GASVM (genetic algorithm combined with support vector machine), and Venn diagram calculation, were used to reduce the dimensions of the data variable in order to further reduce numbers of variables for modeling. Finally, 101 NIR and 73 FT-MIR bands were selected as the feature variables, respectively. Thirdly, stacking models were built based on the optimal spectral dataset. Most of the stacking models performed better than the full spectra-based models. RF and SVM (as base learners), combined with the SVM meta-classifier, was the optimal stacked generalization strategy. For the SG-Ven-MIR-SVM model, the accuracy (ACC) of the calibration set and validation set were both 100%. Sensitivity (SE), specificity (SP), efficiency (EFF), Matthews correlation coefficient (MCC), and Cohen's kappa coefficient (K) were all 1, which showed that the model had the optimal authenticity identification performance. Those parameters indicated that stacked generalization combined with feature selection is probably an important technique for improving the classification model predictive accuracy and avoid overfitting. The study result can provide a valuable reference for the safety and effectiveness of the clinical application of medicinal Gentiana.
Collapse
Affiliation(s)
- Tao Shen
- Yunnan Herbal Laboratory, Institute of Herb Biotic Resources, School of Life and Sciences, Yunnan University, Kunming 650091, China;
- The International Joint Research Center for Sustainable Utilization of Cordyceps Bioresources in China (Yunnan) and Southeast Asia, Yunnan University, Kunming 650091, China
- College of Chemistry, Biological and Environment, Yuxi Normal University, Yu’xi 653100, China
| | - Hong Yu
- Yunnan Herbal Laboratory, Institute of Herb Biotic Resources, School of Life and Sciences, Yunnan University, Kunming 650091, China;
- The International Joint Research Center for Sustainable Utilization of Cordyceps Bioresources in China (Yunnan) and Southeast Asia, Yunnan University, Kunming 650091, China
- Correspondence: ; Tel.: +86-1370-067-6633
| | - Yuan-Zhong Wang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650200, China;
| |
Collapse
|
9
|
Vu HT, Vu QL, Nguyen TD, Tran N, Nguyen TC, Luu PN, Tran DD, Nguyen TK, Le L. Genetic Diversity and Identification of Vietnamese Paphiopedilum Species Using DNA Sequences. BIOLOGY 2019; 9:E9. [PMID: 31906128 PMCID: PMC7168009 DOI: 10.3390/biology9010009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/20/2019] [Accepted: 12/20/2019] [Indexed: 12/23/2022]
Abstract
Paphiopedilum is among the most popular ornamental orchid genera due to its unique slipper flowers and attractive leaf coloration. Most of the Paphiopedilum species are in critical danger due to over-exploitation. They were listed in Appendix I of the Convention on International Trade in Endangered Species of Wild Fauna and Flora, which prevents their being traded across borders. While most Paphiopedilum species are distinctive, owing to their respective flowers, their vegetative features are more similar and undistinguished. Hence, the conservation of these species is challenging, as most traded specimins are immature and non-flowered. An urgent need exists for effective identification methods to prevent further illegal trading of Paphiopedilum species. DNA barcoding is a rapid and sensitive method for species identification, at any developmental stage, using short DNA sequences. In this study, eight loci, i.e., ITS, LEAFY, ACO, matK, trnL, rpoB, rpoC1, and trnH-psbA, were screened for potential barcode sequences on the Vietnamese Paphiopedilum species. In total, 17 out of 22 Paphiopedilum species were well identified. The studied DNA sequences were deposited to GenBank, in which Paphiopedilum dalatense accessions were introduced for the first time. ACO, LEAFY, and trnH-psbA were limited in amplification rate for Paphiopedilum. ITS was the best single barcode. Single ITS could be used along with nucleotide polymorphism characteristics for species discrimination. The combination of ITS + matK was the most efficient identification barcode for Vietnamese Paphiopedilum species. This barcode also succeeded in recognizing misidentified or wrongly-named traded samples. Different bioinformatics programs and algorithms for establishing phylogenetic trees were also compared in the study to propose quick, simple, and effective tools for practical use. It was proved that both the Bayesian Inference method in the MRBAYES program and the neighbor-joining method in the MEGA software met the criteria. Our study provides a barcoding database of Vietnamese Paphiopedilum which may significantly contribute to the control and conservation of these valuable species.
Collapse
Affiliation(s)
- Huyen-Trang Vu
- Faculty of Biotechnology, Nguyen-Tat-Thanh University, 298A-300A Nguyen-Tat-Thanh Street, District 04, Hochiminh City 700000, Vietnam; (H.-T.V.); (T.-D.N.); (T.-C.N.)
- Faculty of Biotechnology, International University—Vietnam National University, Linh Trung Ward, Thu Duc District, Hochiminh City 700000, Vietnam;
| | - Quoc-Luan Vu
- Tay Nguyen Institute for Scientific Research, Vietnam Academy of Science and Technology, 116 Xo Viet Nghe Tinh, Ward 7, Da Lat City, Lam Dong province 66000, Vietnam;
| | - Thanh-Diem Nguyen
- Faculty of Biotechnology, Nguyen-Tat-Thanh University, 298A-300A Nguyen-Tat-Thanh Street, District 04, Hochiminh City 700000, Vietnam; (H.-T.V.); (T.-D.N.); (T.-C.N.)
| | - Ngan Tran
- Faculty of Biotechnology, International University—Vietnam National University, Linh Trung Ward, Thu Duc District, Hochiminh City 700000, Vietnam;
| | - Thanh-Cong Nguyen
- Faculty of Biotechnology, Nguyen-Tat-Thanh University, 298A-300A Nguyen-Tat-Thanh Street, District 04, Hochiminh City 700000, Vietnam; (H.-T.V.); (T.-D.N.); (T.-C.N.)
| | - Phuong-Nam Luu
- Faculty of Biotechnology, Nguyen-Tat-Thanh University, 298A-300A Nguyen-Tat-Thanh Street, District 04, Hochiminh City 700000, Vietnam; (H.-T.V.); (T.-D.N.); (T.-C.N.)
| | - Duy-Duong Tran
- Agricultural Genetics Institute, Pham Van Dong Street, Hanoi 100000, Vietnam; (D.-D.T.); (T.-K.N.)
| | - Truong-Khoa Nguyen
- Agricultural Genetics Institute, Pham Van Dong Street, Hanoi 100000, Vietnam; (D.-D.T.); (T.-K.N.)
| | - Ly Le
- Faculty of Biotechnology, International University—Vietnam National University, Linh Trung Ward, Thu Duc District, Hochiminh City 700000, Vietnam;
| |
Collapse
|