1
|
Sui Q, Zhu C, Shi S, Xu J, Zhang J, Wang A, Chen P, Liang G, Zhang Y. Ganoderic acid A: an in-depth review of pharmacological effects and molecular docking analysis. JOURNAL OF ETHNOPHARMACOLOGY 2025; 349:119868. [PMID: 40316150 DOI: 10.1016/j.jep.2025.119868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 03/24/2025] [Accepted: 04/22/2025] [Indexed: 05/04/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ganoderic acid A (GAA, C30H44O7) is one of the most abundant and active components of Ganoderic acids (GAs). GAs are highly oxidized tetracyclic triterpenoid compounds mainly derived from Ganoderma lucidum (Curtis) P. Karst (Chinese: ). GAA is primarily isolated from the fruiting body of Ganoderma lucidum. Modern pharmacological investigations have established the broad pharmacological effects of GAA, highlighting its notable influence on managing various conditions, including inflammatory diseases, neurodegenerative diseases, and cancer. This review provides a comprehensive summary of GAA's pharmacological activities. MATERIAL AND METHODS The literature in this review were searched in PubMed and China National Knowledge Infrastructure (CNKI) using the keywords "Ganoderic acid A″, "Pharmacology" and "Pharmacokinetics". The literature cited in this review dates from 2000 to 2024. RESULTS According to the data, GAA exerts anti-inflammatory, antioxidant, antitumor, neuropsychopharmacological, hepatoprotective, cardiovascular, renoprotective, and lung protective effects by regulating a variety of signal transduction pathways, such as nuclear factor kappa-B (NF-κB), Janus kinase/signal transducer and activator of transcription (JAK/STAT), Toll-like receptor 4 (TLR4), nuclear factor erythroid 2-related factor-2 (Nrf2), phosphoinositide-3-kinase (PI3K)/AKT, mammalian target of rapamycin (mTOR), mitogen-activated protein kinase (MAPK), and Notch. Given its promising pharmacological activity, GAA holds excellent potential for treating human diseases. The pharmacokinetic properties of GAA have also been reviewed, revealing low bioavailability but high absorption and elimination rates. In addition, network pharmacology and molecular docking analyses verified that GAA plays a role in multiple diseases through MAPK3, tumor necrosis factor (TNF), caspase-3 (CASP3), peroxisome proliferator-activated receptor gamma (PPARG), and β-catenin (CTNNB1) signaling pathways. CONCLUSION GAA plays a pivotal role in various pathological and physiological processes, boasting broad application prospects. Furthermore, the network pharmacological results reveal the mechanisms of GAA in the treatment of multiple diseases. In the future, it is necessary to conduct further experiments to elucidate its specific mechanism of action, thus laying the foundation for the scientific utilization of GAA.
Collapse
Affiliation(s)
- Qi Sui
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, 310012, China; Zhejiang TCM Key Laboratory of Pharmacology and Translational Research of Natural Products, Hangzhou Medical College, Hangzhou, Zhejiang, 310012, China
| | - Chengkai Zhu
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, 310012, China; Zhejiang TCM Key Laboratory of Pharmacology and Translational Research of Natural Products, Hangzhou Medical College, Hangzhou, Zhejiang, 310012, China
| | - Sha Shi
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, 310012, China; Zhejiang TCM Key Laboratory of Pharmacology and Translational Research of Natural Products, Hangzhou Medical College, Hangzhou, Zhejiang, 310012, China
| | - Jiaqi Xu
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, 310012, China; Zhejiang TCM Key Laboratory of Pharmacology and Translational Research of Natural Products, Hangzhou Medical College, Hangzhou, Zhejiang, 310012, China
| | - Jingnan Zhang
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, 310012, China; Zhejiang TCM Key Laboratory of Pharmacology and Translational Research of Natural Products, Hangzhou Medical College, Hangzhou, Zhejiang, 310012, China
| | - Ao Wang
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, 310012, China; Department of Pharmacy, School of Medicine, Hangzhou City University, 50 Huzhou Rd, Hangzhou, Zhejiang, 310015, China; Zhejiang TCM Key Laboratory of Pharmacology and Translational Research of Natural Products, Hangzhou Medical College, Hangzhou, Zhejiang, 310012, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Peng Chen
- Department of Pharmacy, School of Medicine, Hangzhou City University, 50 Huzhou Rd, Hangzhou, Zhejiang, 310015, China.
| | - Guang Liang
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, 310012, China; Zhejiang TCM Key Laboratory of Pharmacology and Translational Research of Natural Products, Hangzhou Medical College, Hangzhou, Zhejiang, 310012, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| | - Yi Zhang
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, 310012, China; Zhejiang TCM Key Laboratory of Pharmacology and Translational Research of Natural Products, Hangzhou Medical College, Hangzhou, Zhejiang, 310012, China.
| |
Collapse
|
2
|
Kang L, Luo J, Li P, Zhang G, Wei M, Ji M, Guan H. miR-125a-3p regulates apoptosis by suppressing TMBIM4 in lens epithelial cells. Int Ophthalmol 2022; 43:1261-1274. [PMID: 36173547 DOI: 10.1007/s10792-022-02524-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 09/11/2022] [Indexed: 11/27/2022]
Abstract
PURPOSE To explore the regulatory effect of miR-125a-3p on lens epithelial cells (LECs) under ultraviolet radiation B (UVB) irradiation. METHODS The expression of miR-125a-3p in age-related cataract (ARC) specimens and cell models was detected by qRT-PCR. UVB was utilized to establish DNA damage model of LECs. Cell count kit-8 was applied in detecting cell viability. Cell apoptosis ratio was analyzed by flow cytometry. Dual luciferase reports were applied to analyze the mechanism between miRNA and target genes. Nanoparticle tracking analysis, and Western blot were used to identify whether the exosomes were typical exosomes. RESULTS miR-125a-3p was upregulated in ARC tissues and LECs treated with UVB. Knockdown of miR-125a-3p in LECs significantly decreased apoptosis and increased viability of UVB-irradiated LECs. We predicted that miR-125a-3p could regulate transmembrane Bax inhibitor motif containing 4 (TMBIM4) by the bioinformatics databases TargetScan, miRBase, and miRWalk. Luciferase reporter assays demonstrated that miR-125a-3p may suppress TMBIM4 protein translation by binding to 3'UTR of TMBIM4 mRNA. Overexpression of miR-125a-3p decreased TMBIM4, which suggested that miR-125a-3p could inhibit TMBIM4. Moreover, knockdown of TMBIM4 decreased cell viability and enhanced cell apoptosis during UVB irradiation. In addition, the exosome secretion of LECs irradiated by UVB was enhanced, and the expression of miR-125a-3p was high. Cell viability was significantly decreased, and cell apoptosis was increased during UVB-exos treatment. CONCLUSION This study indicated that miR-125a-3p regulated apoptosis by suppressing TMBIM4 in LECs under oxidative damage, providing a new idea for clinical therapeutic target of cataract.
Collapse
Affiliation(s)
- Lihua Kang
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu Province, China
| | - Jiawei Luo
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu Province, China
| | - Pengfei Li
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu Province, China
| | - Guowei Zhang
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu Province, China
| | - Miao Wei
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu Province, China
| | - Min Ji
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu Province, China
| | - Huaijin Guan
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu Province, China.
| |
Collapse
|
3
|
Wu Q, Song J, Gao Y, Zou Y, Guo J, Zhang X, Liu D, Guo D, Bi H. Epigallocatechin gallate enhances human lens epithelial cell survival after UVB irradiation via the mitochondrial signaling pathway. Mol Med Rep 2022; 25:87. [PMID: 35039875 PMCID: PMC8809122 DOI: 10.3892/mmr.2022.12603] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 11/17/2021] [Indexed: 01/24/2023] Open
Abstract
The aim of the present study was to explore the mechanism underlying the ultraviolet B (UVB) irradiation-induced apoptosis of human lens epithelial cells (HLECs), and to investigate the protective effect of epigallocatechin gallate (EGCG) against the UVB-induced apoptosis of HLECs. HLECs were exposed to different concentrations of EGCG plus UVB (30 mJ/cm2). Cell viability was determined using the MTT assay. Furthermore, mitochondrial membrane potential (Δψm) and apoptosis were assessed by flow cytometry with JC-1 and Annexin V/PI staining, respectively. Moreover, the activities of catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), as well as the levels of GSH, hydrogen peroxide (H2O2) and hydroxyl free radicals were determined using biochemical assay techniques. Reverse transcription-quantitative PCR and western blotting were used to detect the mRNA and protein expression levels of Bcl-2, Bax, cytochrome c, caspase-9 and caspase-3, respectively. The results revealed that UVB irradiation reduced the Δψm of HLECs and induced apoptosis. Notably, EGCG significantly attenuated the generation of H2O2 and hydroxyl free radicals caused by UVB irradiation in HLECs, and significantly increased CAT, SOD and GSH-Px activities, however, the GSH levels were not significantly increased. EGCG also reduced UVB-stimulated Bax, cytochrome c, caspase-9 and caspase-3 expression, and elevated Bcl-2 expression, suggesting that EGCG may possess free radical-scavenging properties, thus increasing cell viability. In conclusion, EGCG may be able to protect against UVB-induced HLECs apoptosis through the mitochondria-mediated apoptotic signaling pathway, indicating its potential application in clinical practice.
Collapse
Affiliation(s)
- Qiuxin Wu
- Affiliated Eye Hospital, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250002, P.R. China
| | - Jike Song
- Affiliated Eye Hospital, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250002, P.R. China
| | - Yan'e Gao
- Affiliated Eye Hospital, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250002, P.R. China
| | - Yingying Zou
- Affiliated Eye Hospital, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250002, P.R. China
| | - Junguo Guo
- Affiliated Eye Hospital, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250002, P.R. China
| | - Xiuyan Zhang
- Affiliated Eye Hospital, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250002, P.R. China
| | - Dongmei Liu
- Affiliated Eye Hospital, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250002, P.R. China
| | - Dadong Guo
- College of Ophthalmology and Optometry, Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Shandong Academy of Eye Disease Prevention and Therapy, Jinan, Shandong 250002, P.R. China
| | - Hongsheng Bi
- Affiliated Eye Hospital, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250002, P.R. China
| |
Collapse
|
4
|
Zheng S, Ma J, Zhao X, Yu X, Ma Y. Ganoderic Acid A Attenuates IL-1β-Induced Inflammation in Human Nucleus Pulposus Cells Through Inhibiting the NF-κB Pathway. Inflammation 2021; 45:851-862. [PMID: 34739636 DOI: 10.1007/s10753-021-01590-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/23/2021] [Accepted: 10/25/2021] [Indexed: 01/01/2023]
Abstract
Intervertebral disc (IVD) degeneration is a major cause of low back pain associated with several pathological changes in the IVD, including dysfunction of nucleus pulposus (NP) cells. Ganoderic Acid A (GAA), one of triterpenoid extracts of Ganoderma lucidum (G. lucidum), has been reported to possess anti-inflammatory effect. In the current study, we aimed to evaluate the effect of Ganoderic Acid A (GAA) on the interleukin-1β (IL-1β)-induced inflammation in human NP cells. Our results showed that the IL-1β-stimulated production of inflammatory mediators including nitric oxide (NO), prostaglandin E2 (PGE2), inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2 were suppressed by GAA. In addition, treatment of NP cells with GAA significantly inhibited the production of inflammatory cytokines tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in IL-1β-stimulated human NP cells. GAA improved the reduced expression levels of extracellular matrix (ECM) proteins, collagen II and aggrecan in IL-1β-stimulated human NP cells. GAA also alleviated IL-1β-induced the levels of matrix metalloproteinase (MMP)-3 and MMP-13. Furthermore, GAA inhibited the IL-1β-induced upregulation of the phosphorylation of p65 and downregulation of IκBα. Taken together, these findings indicated that GAA alleviated IL-1β-induced inflammation and ECM degradation in NP cells through regulating NF-κB pathway.
Collapse
Affiliation(s)
- Sihua Zheng
- Orthopedics Department, Xixi Hospital of Hangzhou, Hangzhou, 310023, China
| | - Jianmin Ma
- Department of Bone Surgery, Yinchuan Second People's Hospital, Yinchuan, 750011, China
| | - Xuezheng Zhao
- Orthopedics Department, Xixi Hospital of Hangzhou, Hangzhou, 310023, China
| | - Xuezi Yu
- Orthopedics Department, Xixi Hospital of Hangzhou, Hangzhou, 310023, China
| | - Yong Ma
- Orthopedics Department, Foshan Nanhai District Fifth People's Hospital, Nanhai District, No. 63, Zhongbian Road, Dali TownFoshanGuangdong Province, 528231, China.
| |
Collapse
|