1
|
Lai C, Tian D, Zheng M, Li B, Jia J, Wei J, Wu B, Bi H, Tang J. Novel citrinin derivatives from fungus Penicillium sp. TW131-64 and their antimicrobial activities. Appl Microbiol Biotechnol 2023; 107:6607-6619. [PMID: 37642717 DOI: 10.1007/s00253-023-12738-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/05/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023]
Abstract
Six new citrinin derivatives (1, 2, 4, 10, 11, and 16), along with fourteen known analogues, were acquired from Penicillium sp. TW131-64, a marine-derived fungus strain. The chemical structures of new compounds were identified through adopting various spectroscopic methods in combination with X-ray diffraction technology and comparison of the experimental electronic circular dichroism (ECD) with calculated ones. Among them, compounds 1-4 were nitrogen-containing citrinin derivatives existing in enantiomers which were resolved by chiral chromatography. A putative biosynthetic pathway for compounds 1-4 was proposed. Additionally, the antimicrobial activities of these compounds were detected by the broth microdilution assays. Citrinin derivatives 1, 2, 4 and their corresponding enantiomers (1a, 2a, 4a, 1b, 2b, and 4b) exhibited potent antimicrobial activities towards Helicobacter pylori standard strains and multidrug-resistant strains (MIC values ranging from 0.25 to 8 μg/mL), which were comparable or even better than metronidazole. Moreover, compounds 1a and 1b also showed remarkable broad antimicrobial effects towards Staphylococcus aureus, Enterococcus faecalis, methicillin-resistant Staphylococcus aureus (MRSA), Bacillus subtilis, vancomycin-resistant Enterococcus faecium (VRE), and Candida albicans. In summary, our studies demonstrated that citrinin enantiomers 1a-4a and 1b-4b, especially 1a and 1b, can be lead compounds in the research and development (R & D) of novel antimicrobial drugs. KEY POINTS: • 3 novel nitrogen-containing citrinin derivatives (1, 2, 4) were isolated. • citrinin derivatives 1-4 in enantiomers were resolved by chiral chromatography. • citrinin derivatives 1a and 1b showed broad and significant antimicrobial effects.
Collapse
Affiliation(s)
- Changrong Lai
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drug Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, China
| | - Danmei Tian
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drug Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, China
| | - Mingxin Zheng
- Department of Pathogen Biology, Jiangsu Key Laboratory of Pathogen Biology, Helicobacter Pylori Research Centre, Nanjing Medical University, Nanjing, 211166, China
| | - Binglei Li
- Department of Pathogen Biology, Jiangsu Key Laboratory of Pathogen Biology, Helicobacter Pylori Research Centre, Nanjing Medical University, Nanjing, 211166, China
| | - Jia Jia
- Department of Pathogen Biology, Jiangsu Key Laboratory of Pathogen Biology, Helicobacter Pylori Research Centre, Nanjing Medical University, Nanjing, 211166, China
| | - Jihua Wei
- Ocean College, Zhejiang University, Zhoushan Campus, Zhoushan, 316021, China
| | - Bin Wu
- Ocean College, Zhejiang University, Zhoushan Campus, Zhoushan, 316021, China.
| | - Hongkai Bi
- Department of Pathogen Biology, Jiangsu Key Laboratory of Pathogen Biology, Helicobacter Pylori Research Centre, Nanjing Medical University, Nanjing, 211166, China.
| | - Jinshan Tang
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drug Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
2
|
Yu HQ, Li G, Lou HX. Isolation, Biosynthesis, and Biological Activity of Polycyclic Xanthones From Actinomycetes. Front Microbiol 2022; 13:922089. [PMID: 35910634 PMCID: PMC9327801 DOI: 10.3389/fmicb.2022.922089] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 06/06/2022] [Indexed: 12/22/2022] Open
Abstract
Natural products from actinomycetes serve as a crucial source of clinical pharmaceuticals, especially antibiotics and anticancer agents. Among them, polycyclic xanthones belong to a growing group of highly oxygenated aromatic polyketides with a xanthone-containing angular hexacyclic framework. These biosynthetically unique small molecules are of great interest due to their wide spectrum of biological activities, especially the remarkable antibacterial activity against gram-positive bacteria and the significant antineoplastic effects toward various cancer cells at nanomolar concentrations. Their complex structures and significant bioactivities have aroused considerable attention in the chemical and biological communities in recent decades. This review covers the isolation, the biosynthesis, and the biological studies toward these structurally complex and biologically active molecules.
Collapse
Affiliation(s)
- Hui-Qing Yu
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Gang Li
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University, Qingdao, China
- *Correspondence: Gang Li,
| | - Hong-Xiang Lou
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University, Qingdao, China
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, China
- Hong-Xiang Lou,
| |
Collapse
|