1
|
Beduleva L, Sidorov A, Fomina K, Terentiev A, Menshikov I, Shklyaeva N, Ivanov P, Varaksin V. Experimental rat models for Hashimoto's thyroiditis. J Endocrinol Invest 2024; 47:1205-1214. [PMID: 38010598 DOI: 10.1007/s40618-023-02240-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 11/04/2023] [Indexed: 11/29/2023]
Abstract
PURPOSE Hashimoto's thyroiditis (HT) is an autoimmune thyroid disease characterized by T lymphocyte-mediated destruction of thyroid follicles. To study the pathogenesis of HT and the efficacy of new substances for its treatment, an easily obtained and adequate to the human disease experimental model is needed. The aim of our study was to find out whether it is possible to induce experimental autoimmune thyroiditis (EAT) similar to Hashimoto's thyroiditis by injecting with thyroglobulin (Tg) without using agents that enhance its thyroiditogenicity and without taking into account the genetic sensitivity of animals. METHODS Wistar rats were immunized with freshly isolated rat Tg or porcine Tg. In 8 weeks, histological studies of the thyroid and parathyroid glands were performed. Thyroid function and total serum calcium level were also evaluated. RESULTS Immunization with both rat and porcine freshly isolated Tg caused T lymphocytic infiltration of the thyroid gland, thyroid follicle atrophy and degradation in Wistar rats. EAT caused by porcine Tg was characterized by greater severity than EAT induced with rat Tg. In 55% of rats with porcine Tg-induced EAT, oxyphilic metaplasia was detected in the parathyroid glands. In addition, low total serum calcium was observed in these rats. CONCLUSION Two rat models of autoimmune thyroiditis were obtained. EAT caused in Wistar rats by immunization with rat Tg is similar to Hashimoto's thyroiditis. EAT induced with porcine Tg was accompanied by oxyphil cell metaplasia in the parathyroids and hypocalcemia.
Collapse
Affiliation(s)
- L Beduleva
- Laboratory of Molecular and Cell Immunology, Department of Immunology and Cell Biology, Udmurt State University, 1 Universitetskaya St., Izhevsk, Russian Federation, 426034.
- Laboratory of Biocompatible Materials, Udmurt Federal Research Center UB RAS, 34 T. Baramzinoy St., Izhevsk, Russian Federation, 426067.
| | - A Sidorov
- Laboratory of Molecular and Cell Immunology, Department of Immunology and Cell Biology, Udmurt State University, 1 Universitetskaya St., Izhevsk, Russian Federation, 426034
- Laboratory of Biocompatible Materials, Udmurt Federal Research Center UB RAS, 34 T. Baramzinoy St., Izhevsk, Russian Federation, 426067
| | - K Fomina
- Laboratory of Molecular and Cell Immunology, Department of Immunology and Cell Biology, Udmurt State University, 1 Universitetskaya St., Izhevsk, Russian Federation, 426034
- Laboratory of Biocompatible Materials, Udmurt Federal Research Center UB RAS, 34 T. Baramzinoy St., Izhevsk, Russian Federation, 426067
| | - A Terentiev
- Laboratory of Molecular and Cell Immunology, Department of Immunology and Cell Biology, Udmurt State University, 1 Universitetskaya St., Izhevsk, Russian Federation, 426034
- Laboratory of Biocompatible Materials, Udmurt Federal Research Center UB RAS, 34 T. Baramzinoy St., Izhevsk, Russian Federation, 426067
| | - I Menshikov
- Laboratory of Molecular and Cell Immunology, Department of Immunology and Cell Biology, Udmurt State University, 1 Universitetskaya St., Izhevsk, Russian Federation, 426034
- Laboratory of Biocompatible Materials, Udmurt Federal Research Center UB RAS, 34 T. Baramzinoy St., Izhevsk, Russian Federation, 426067
| | - N Shklyaeva
- Laboratory of Molecular and Cell Immunology, Department of Immunology and Cell Biology, Udmurt State University, 1 Universitetskaya St., Izhevsk, Russian Federation, 426034
| | - P Ivanov
- Laboratory of Molecular and Cell Immunology, Department of Immunology and Cell Biology, Udmurt State University, 1 Universitetskaya St., Izhevsk, Russian Federation, 426034
| | - V Varaksin
- Laboratory of Biocompatible Materials, Udmurt Federal Research Center UB RAS, 34 T. Baramzinoy St., Izhevsk, Russian Federation, 426067
| |
Collapse
|
2
|
Gao Y, Wang X, Gao Y, Bai J, Zhao Y, Wang R, Wang H, Zhu G, Wang X, Han X, Zhang Y, Wang H. The Lnc-ENST00000602558/IGF1 axis as a predictor of response to treatment with tripterygium glycosides in rheumatoid arthritis patients. Immun Inflamm Dis 2024; 12:e1098. [PMID: 38270302 PMCID: PMC10790680 DOI: 10.1002/iid3.1098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 11/04/2023] [Accepted: 11/12/2023] [Indexed: 01/26/2024] Open
Abstract
AIMS Growing clinical evidence suggests that not all patients with rheumatoid arthritis (RA) benefit to the same extent by treatment with tripterygium glycoside (TG), which highlights the need to identify RA-related genes that can be used to predict drug responses. In addition, single genes as markers of RA are not sufficiently accurate for use as predictors. Therefore, there is a need to identify paired expression genes that can serve as biomarkers for predicting the therapeutic effects of TG tablets in RA. METHODS A total of 17 pairs of co-expressed genes were identified as candidates for predicting an RA patient's response to TG therapy, and genes involved in the Lnc-ENST00000602558/GF1 axis were selected for that purpose. A partial-least-squares (PLS)-based model was constructed based on the expression levels of Lnc-ENST00000602558/IGF1 in peripheral blood. The model showed high efficiency for predicting an RA patient's response to TG tablets. RESULTS Our data confirmed that genes co-expressed in the Lnc-ENST00000602558/IGF1 axis mediate the efficacy of TG in RA treatment, reduce tumor necrosis factor-α induced IGF1 expression, and decrease the inflammatory response of MH7a cells. CONCLUSION We found that genes expressed in the Lnc-ENST00000602558/IGF1 axis may be useful for identifying RA patients who will not respond to TG treatment. Our findings provide a rationale for the individualized treatment of RA in clinical settings.
Collapse
Affiliation(s)
- Yang Gao
- Department of Chinese MedicineTsinghua University HospitalBeijingChina
| | - Xiaoyue Wang
- Institute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingChina
| | - Yanfeng Gao
- Department of DermatologyThe Second Mongolian Medical Hospital of Traditional Chinese MedicineChi Feng CityInner MongoliaChina
| | - Jian Bai
- Guizhou University of Traditional Chinese Medicine Graduate SchoolGuiyang CityGuizhouChina
| | - Yanpeng Zhao
- Guizhou University of Traditional Chinese Medicine Graduate SchoolGuiyang CityGuizhouChina
| | - Renyi Wang
- Guizhou University of Traditional Chinese Medicine Graduate SchoolGuiyang CityGuizhouChina
| | - Hanzhou Wang
- Department of Rheumatology, Guang'anmen HospitalChina Medical SciencesBeijingChina
| | - Guangzhao Zhu
- Department of RheumatologyQinghai Hospital of TCMXining CityQinghaiChina
| | - Xixi Wang
- Guizhou University of Traditional Chinese Medicine Graduate SchoolGuiyang CityGuizhouChina
| | - Xiaochen Han
- Department of Internal MedicineBeijing Fengsheng Hospital of Traditional Medical Traumatology & OrthopedicsBeijingChina
| | - Yanqiong Zhang
- Institute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingChina
| | - Hailong Wang
- Department of Rheumatology, Dongzhimen HospitalBeijing University of Chinese MedicineBeijingChina
| |
Collapse
|
3
|
Chatterjee S, Mahmood S, Hilles AR, Thomas S, Roy S, Provaznik V, Romero EL, Ghosal K. Cationic starch: A functionalized polysaccharide based polymer for advancement of drug delivery and health care system - A review. Int J Biol Macromol 2023; 248:125757. [PMID: 37429342 DOI: 10.1016/j.ijbiomac.2023.125757] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/17/2023] [Accepted: 07/07/2023] [Indexed: 07/12/2023]
Abstract
Research and development in health care industry is in persistence progression. To make it more patient-friendly or to get maximum benefits from it, special attention to different advanced drug delivery system (ADDS) is employed that delivers the drug at the target site and will be able to sustain/control release of drugs. ADDS should be non-toxic, biodegradable, biocompatible along with desirable showing physicochemical and functional properties. These drug delivery systems can be totally based on polymers, either with natural or synthetic polymers. The molecular weight of polymer can be tuned and different groups of polymers can be modified or substituted with other functional groups. Degree of substitution is also tailored. Cationic starch in recent years is exploited in drug delivery, tissue engineering and biomedicine. Due to their abundant availability, low cost, easy chemical modification, low toxicity, biodegradability and biocompatibility, extensive research is now being carried out. Our present discussion will shed light on the usage of cationic starch in health care system.
Collapse
Affiliation(s)
- Shreya Chatterjee
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Syed Mahmood
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Ayah Rebhi Hilles
- INHART, International Islamic University Malaysia, Jalan Gombak, 53100, Selangor, Malaysia
| | - Sabu Thomas
- IIUCNN, Mahatma Gandhi University, Kottayam, Kerala, India
| | - Sudeep Roy
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology Technická 12, 61200 Brno, Czech Republic
| | - Valentine Provaznik
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology Technická 12, 61200 Brno, Czech Republic
| | - Eder Lilia Romero
- Department of Science and Technology, Nanomedicines Research and Development Center, Quilmes National University, Buenos Aires, Argentina
| | - Kajal Ghosal
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India.
| |
Collapse
|
4
|
Nornberg AB, Martins CC, Cervi VF, Sari MHM, Cruz L, Luchese C, Wilhelm EA, Fajardo AR. Transdermal release of methotrexate by cationic starch/poly(vinyl alcohol)-based films as an approach for rheumatoid arthritis treatment. Int J Pharm 2022; 611:121285. [PMID: 34774696 DOI: 10.1016/j.ijpharm.2021.121285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/25/2021] [Accepted: 11/07/2021] [Indexed: 12/24/2022]
Abstract
Methotrexate (MTX) is a common drug used for rheumatoid arthritis (RA) treatment; however, a series of adverse effects associated with its oral or subcutaneous administration is reported. Transdermal delivery of MTX is an alternative to abate these issues, and the use of drug delivery systems (DDS) based on polymeric films presents an impressive potential for this finality. Based on this, in this study, we report the preparation of films made by cationic starch (CSt), poly(vinyl alcohol) (PVA), and chondroitin sulfate (ChS) to incorporate and release MTX, as well as the in vivo evaluation in model of rheumatoid arthritis in mice. CSt/PVA and CSt/PVA/ChS-based films (with and without MTX) were prepared using a simple protocol under mild conditions. The films loaded with 5 w/w-% of MTX exhibited appreciable drug loading efficiency and distribution. The MTX permeation through the layers of porcine skin demonstrated that most of the drug permeated was detected in the medium, suggesting that the formulation can provide a systemic absorption of the MTX. In vivo studies performed in an arthritis-induced model in mice demonstrated that the MTX-loaded films were able to treat and attenuate the symptoms and the biochemical alterations related to RA (inflammatory process, oxidative stress, and nociceptive behaviors). Besides, the pharmacological activity of MTX transdermally delivery by the CSt/PVA and CSt/PVA/ChS films was comparable to the MTX orally administered. Based on these results, it can be inferred that both films are prominent materials for incorporation and transdermal delivery of MTX in a practical and non-invasive manner.
Collapse
Affiliation(s)
- Andressa B Nornberg
- Laboratório de Tecnologia e Desenvolvimento de Compósitos e Materiais Poliméricos (LaCoPol), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão s/n, 96010-900 Pelotas-RS, Brazil
| | - Carolina C Martins
- Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão, 96010-900 Pelotas-RS, Brazil
| | - Verônica F Cervi
- Laboratório de Tecnologia Farmacêutica, Centro de Ciências da Saúde, Departamento de Farmácia Industrial, Universidade Federal de Santa Maria (UFSM), 97105-900 Santa Maria-RS, Brazil
| | - Marcel H M Sari
- Laboratório de Tecnologia Farmacêutica, Centro de Ciências da Saúde, Departamento de Farmácia Industrial, Universidade Federal de Santa Maria (UFSM), 97105-900 Santa Maria-RS, Brazil
| | - Letícia Cruz
- Laboratório de Tecnologia Farmacêutica, Centro de Ciências da Saúde, Departamento de Farmácia Industrial, Universidade Federal de Santa Maria (UFSM), 97105-900 Santa Maria-RS, Brazil
| | - Cristiane Luchese
- Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão, 96010-900 Pelotas-RS, Brazil
| | - Ethel A Wilhelm
- Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão, 96010-900 Pelotas-RS, Brazil.
| | - André R Fajardo
- Laboratório de Tecnologia e Desenvolvimento de Compósitos e Materiais Poliméricos (LaCoPol), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão s/n, 96010-900 Pelotas-RS, Brazil.
| |
Collapse
|
5
|
Didiasova M, Wujak L, Schaefer L, Wygrecka M. Factor XII in coagulation, inflammation and beyond. Cell Signal 2018; 51:257-265. [DOI: 10.1016/j.cellsig.2018.08.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/08/2018] [Accepted: 08/09/2018] [Indexed: 12/19/2022]
|
6
|
He Y, Zhang M, Shan M, Zeng P, Li X, Hao C, Dou H, Yang D, Feng N, Zhang L. Optimizing microwave-assisted hydrolysis conditions for monosaccharide composition analyses of different polysaccharides. Int J Biol Macromol 2018; 118:327-332. [PMID: 29933001 DOI: 10.1016/j.ijbiomac.2018.06.077] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 06/11/2018] [Accepted: 06/13/2018] [Indexed: 12/30/2022]
Abstract
Releasing all monosaccharides during acid hydrolysis for composition analysis of polysaccharides has been a time consuming process. In current study, an efficient (10 μL sample + 10 μL acid), sensitive, and quick monosaccharide composition analysis of polysaccharides was accomplished by using microwave-assisted HCl hydrolysis (10 min) of the polysaccharides followed by high-performance anion-exchange chromatography (HPAEC) combined with pulsed amperometric detection (PAD) analysis. Compared to the conventional hydrolysis procedure, this method is an efficient approach for monosaccharide composition analysis of acidic, basic, and neutral polysaccharides and particularly suited to polysaccharides that are difficult to hydrolyse fully such as chitosan, heparin and chondroitin sulfates.
Collapse
Affiliation(s)
- Yanli He
- Systems Biology & Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao 266003, China; School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Meng Zhang
- Systems Biology & Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Ming Shan
- Systems Biology & Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Pengjiao Zeng
- Systems Biology & Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Xiulian Li
- Systems Biology & Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao 266003, China; School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Cui Hao
- Systems Biology & Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Huaiqian Dou
- Systems Biology & Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Dandan Yang
- Systems Biology & Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Ningchuan Feng
- School of Basic Medicine Sciences, Ningxia Medical University, Yinchuan 750004, China.
| | - Lijuan Zhang
- Systems Biology & Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao 266003, China.
| |
Collapse
|
7
|
Zhang Y, Wang H, Mao X, Guo Q, Li W, Wang X, Li G, Jiang Q, Lin N. A Novel Circulating miRNA-Based Model Predicts the Response to Tripterysium Glycosides Tablets: Moving Toward Model-Based Precision Medicine in Rheumatoid Arthritis. Front Pharmacol 2018; 9:378. [PMID: 29881347 PMCID: PMC5977984 DOI: 10.3389/fphar.2018.00378] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 04/03/2018] [Indexed: 01/01/2023] Open
Abstract
Accumulating clinical evidence show that not all rheumatoid arthritis (RA) patients benefit to the same extent from a Tripterygium wilfordii Hook F (TwHF)-based therapy-Tripterysium glycosides tablets (TG tablets), which emphasizes the need of predictive biomarkers and tools for drug response. Herein, we integrated TG tablets' response-related miRNA and mRNA expression profiles obtained from the clinical cohort-based microarray, miRNA target prediction, miRNA-target gene coexpression, as well as gene-gene interactions, to identify four candidate circulating miRNA biomarkers that were predictive of response to TG tablets. Moreover, we applied the support vector machines (SVM) algorithm to construct the prediction model for the treatment outcome of TG tablets based on the levels of the candidate miRNA biomarkers, and also confirmed its good performance via both 5-fold cross-validation and the independent clinical cohort validations. Collectively, this circulating miRNA-based biomarker model may assist in screening the responsive RA patients to TG tablets and thus potentially benefit individualized therapy of RA in a daily clinical setting.
Collapse
Affiliation(s)
- Yanqiong Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hailong Wang
- Division of Rheumatology, Guang An Men Hospital, China Academy of Chinese Medical Science, Beijing, China.,Department of Rheumatology, Basic Medical College of Guiyang University of Chinese Medicine, Guiyang, China
| | - Xia Mao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qiuyan Guo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Weijie Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaoyue Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guangyao Li
- Division of Rheumatology, Guang An Men Hospital, China Academy of Chinese Medical Science, Beijing, China
| | - Quan Jiang
- Division of Rheumatology, Guang An Men Hospital, China Academy of Chinese Medical Science, Beijing, China
| | - Na Lin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
8
|
Yang A, Zhou J, Wang B, Dai J, Colman RW, Song W, Wu Y. A critical role for plasma kallikrein in the pathogenesis of autoantibody-induced arthritis. FASEB J 2017; 31:5419-5431. [PMID: 28808141 DOI: 10.1096/fj.201700018r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 07/31/2017] [Indexed: 01/08/2023]
Abstract
The plasma kallikrein-kinin system (KKS) consists of serine proteases, prekallikrein (pKal) and factor XII (FXII), and a cofactor, high-MW kininogen (HK). Upon activation, activated pKal and FXII cleave HK to release bradykinin. Activation of this system has been noted in patients with rheumatoid arthritis, and its pathogenic role has been characterized in animal arthritic models. In this study, we generated 2 knockout mouse strains that lacked pKal and HK and determined the role of KKS in autoantibody-induced arthritis. In a K/BxN serum transfer-induced arthritis (STIA) model, mice that lacked HK, pKal, or bradykinin receptors displayed protective phenotypes in joint swelling, histologic changes in inflammation, and cytokine production; however, FXII-deficient mice developed normal arthritis. Inhibition of Kal ameliorated arthritis severity and incidence at early stage STIA and reduced the levels of major cytokines in joints. In addition to releasing bradykinin from HK, Kal directly activated monocytes to produce proinflammatory cytokines, up-regulated their C5aR and FcRIII expression, and released C5a. Immune complex increased pKal activity, which led to HK cleavage. The absence of HK is associated with a decrease in joint vasopermeability. Thus, we identify a critical role for Kal in autoantibody-induced arthritis with pleiotropic effects, which suggests that it is a new target for the inhibition of arthritis.-Yang, A., Zhou, J., Wang, B., Dai, J., Colman, R. W., Song, W., Wu, Y. A critical role for plasma kallikrein in the pathogenesis of autoantibody-induced arthritis.
Collapse
Affiliation(s)
- Aizhen Yang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Junsong Zhou
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.,The Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | - Bo Wang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Jihong Dai
- The Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania, USA.,Department of Pathology and Laboratory Medicine, Rutgers-New Jersey Medical School, Newark, New Jersey, USA
| | - Robert W Colman
- The Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | - Wenchao Song
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yi Wu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China; .,The Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
9
|
Nicola H. The role of contact system in septic shock: the next target? An overview of the current evidence. J Intensive Care 2017; 5:31. [PMID: 28572980 PMCID: PMC5450093 DOI: 10.1186/s40560-017-0228-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 05/23/2017] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Septic shock remains challenging to intensive care units worldwide, despite recent documented improvement in mortality over the years. Multiple new therapies have been attempted without success in large clinical trials. Evidence concerning the role of the contact system and bradykinin on septic shock physiological manifestations is shown by this article. OBJECTIVES The objective of the study is to review the current evidence linking contact system activation and septic shock, as well as efficacy of available therapies targeting this pathophysiological pathway and to evaluate the potential of further researching the matter. RESULTS Multiple animal studies are already available and suggestive of a meaningful role of contact system activation on septic shock. However, human trials are still scarce, and the ones available are not enough to establish such a strong connection. Furthermore, attempted therapies have been successful across multiple species, but not as much in humans. Therefore, contact system and septic shock relationship remains plentiful in questions to be answered in the coming years or decades. CONCLUSIONS Whether the contact system is not as relevant in humans as it is in animals or there is only lack of evidence remains to be explained. The subject is an attractive open field for further research aiming to aid in tackling such a burdensome condition.
Collapse
Affiliation(s)
- Henrique Nicola
- Intensive Care Registrar Trainee, Royal Perth Hospital, 197 Wellington St Perth, Western Australia, 6000 Australia
| |
Collapse
|
10
|
Lang Y, Zhao X, Liu L, Yu G. Applications of mass spectrometry to structural analysis of marine oligosaccharides. Mar Drugs 2014; 12:4005-30. [PMID: 24983643 PMCID: PMC4113812 DOI: 10.3390/md12074005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 04/28/2014] [Accepted: 05/06/2014] [Indexed: 11/23/2022] Open
Abstract
Marine oligosaccharides have attracted increasing attention recently in developing potential drugs and biomaterials for their particular physical and chemical properties. However, the composition and sequence analysis of marine oligosaccharides are very challenging for their structural complexity and heterogeneity. Mass spectrometry (MS) has become an important technique for carbohydrate analysis by providing more detailed structural information, including molecular mass, sugar constituent, sequence, inter-residue linkage position and substitution pattern. This paper provides an overview of the structural analysis based on MS approaches in marine oligosaccharides, which are derived from some biologically important marine polysaccharides, including agaran, carrageenan, alginate, sulfated fucan, chitosan, glycosaminoglycan (GAG) and GAG-like polysaccharides. Applications of electrospray ionization mass spectrometry (ESI-MS) are mainly presented and the general applications of matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) are also outlined. Some technical challenges in the structural analysis of marine oligosaccharides by MS have also been pointed out.
Collapse
Affiliation(s)
- Yinzhi Lang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| | - Xia Zhao
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| | - Lili Liu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| | - Guangli Yu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|