Khadjavi A, Valente E, Giribaldi G, Prato M. Involvement of p38 MAPK in haemozoin-dependent MMP-9 enhancement in human monocytes.
Cell Biochem Funct 2013;
32:5-15. [PMID:
23468369 DOI:
10.1002/cbf.2963]
[Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 12/05/2012] [Accepted: 01/21/2013] [Indexed: 01/01/2023]
Abstract
The lipid moiety of natural haemozoin (nHZ, malarial pigment) was previously shown to enhance expression and release of human monocyte matrix metalloproteinase-9 (MMP-9), and a major role for 15-(S,R)-hydroxy-6,8,11,13-eicosatetraenoic acid (15-HETE), a nHZ lipoperoxidation product, was proposed. Here, the underlying mechanisms were investigated, focusing on the involvement of mitogen-activated protein kinases (MAPKs). Results showed that nHZ promoted either early or late p38 MAPK phosphorylation; however, nHZ did not modify basal phosphorylation/expression ratios of extracellular signal-regulated kinase-1/2 and c-jun N-terminal kinase-1/2. 15-HETE mimicked nHZ effects on p38 MAPK, whereas lipid-free synthetic (s)HZ and delipidized (d)HZ did not. Consistently, both nHZ and 15-HETE also promoted phosphorylation of MAPK-activated protein kinase-2, a known p38 MAPK substrate; such an effect was abolished by SB203580, a synthetic p38 MAPK inhibitor. SB203580 also abrogated nHZ-dependent and 15-HETE-dependent enhancement of MMP-9 mRNA and protein (latent and activated forms) levels in cell lysates and supernatants. Collectively, these data suggest that in human monocytes, nHZ and 15-HETE upregulate MMP-9 expression and secretion through activation of p38 MAPK pathway. The present work provides new evidence on mechanisms underlying MMP-9 deregulation in malaria, which might be helpful to design new specific drugs for adjuvant therapy in complicated malaria.
Collapse