1
|
Ai L, Xin C, Usman M, Zhu Y, Lu H. Effect of Bevacizumab on traumatic penumbra brain edema in rats at different time points. Tissue Barriers 2024; 12:2292463. [PMID: 38084736 PMCID: PMC11583617 DOI: 10.1080/21688370.2023.2292463] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/14/2023] [Accepted: 12/02/2023] [Indexed: 11/22/2024] Open
Abstract
Traumatic penumbra (TP) is a secondary injury area located around the core area of traumatic brain injury after brain trauma, and is an important factor affecting the outcome of traumatic brain injury (TBI). The main pathological change caused by TP is brain edema, including (cellular brain edema and vascular brain edema). The formation and development of brain edema in the TP area are closely related to the blood-brain barrier (BBB) and vascular endothelial growth factor (VEGF). VEGF is a vascular permeability factor that can promote angiogenesis and increase BBB permeability, and there is a debate on the pros and cons of its role in early TBI. Therefore, in the early stage of TBI, when using the VEGF inhibitor bevacizumab to treat TP area brain edema, the timing of bevacizumab administration is particularly important, and there are currently no relevant literature reports. This article explores the treatment time window and optimal treatment time point of bevacizumab in the treatment of cerebral edema in the TP area by administering the same dose of bevacizumab at different time points after brain injury in rats. The results showed that there was traumatic brain edema in TP area, BBB structure and function were damaged, VEGF expression and angiogenesis were increased. Compared with TBI + NS Group, after Bevacizumab treatment, brain edema in TP area was alleviated, BBB structure and function were improved, VEGF expression and angiogenesis were decreased in each treatment group, and the effect of TBI + Bevacizumab 1 h group was the most significant. Bevacizumab can be used as a targeted therapy for traumatic brain edema. The therapeutic time window of bevacizumab for traumatic brain edema is within 12 hours after TBI, and 1 h is the optimal therapeutic time point.
Collapse
Affiliation(s)
- Li Ai
- Department of Postdoctoral Research Workstation, The Seventh People’s Hospital of Chongqing, Chongqing, China
| | - Chen Xin
- Department of Army Special Occupational Disease Prevention and Control Laboratory of Field Surgery Research, Army Characteristic Medical Center, Army Medical University, Chongqing, China
| | - Muhammad Usman
- Department of Postdoctoral Research Workstation, The Seventh People’s Hospital of Chongqing, Chongqing, China
| | - Yu Zhu
- Department of Postdoctoral Research Workstation, The Seventh People’s Hospital of Chongqing, Chongqing, China
| | - Hong Lu
- Department of Postdoctoral Research Workstation, The Seventh People’s Hospital of Chongqing, Chongqing, China
| |
Collapse
|
2
|
Zhang Y, Yang X, Hou X, Zhou W, Bi C, Yang Z, Lu S, Ding Z, Ding Z, Zou Y, Guo Q, Schäfer MKE, Huang C. Extracellular signal-regulated kinase-dependent phosphorylation of histone H3 serine 10 is involved in the pathogenesis of traumatic brain injury. Front Mol Neurosci 2022; 15:828567. [PMID: 36245918 PMCID: PMC9557206 DOI: 10.3389/fnmol.2022.828567] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Traumatic brain injury (TBI) induces a series of epigenetic changes in brain tissue, among which histone modifications are associated with the deterioration of TBI. In this study, we explored the role of histone H3 modifications in a weight-drop model of TBI in rats. Screening for various histone modifications, immunoblot analyses revealed that the phosphorylation of histone H3 serine 10 (p-H3S10) was significantly upregulated after TBI in the brain tissue surrounding the injury site. A similar posttraumatic regulation was observed for phosphorylated extracellular signal-regulated kinase (p-ERK), which is known to phosphorylate H3S10. In support of the hypothesis that ERK-mediated phosphorylation of H3S10 contributes to TBI pathogenesis, double immunofluorescence staining of brain sections showed high levels and colocalization of p-H3S10 and p-ERK predominantly in neurons surrounding the injury site. To test the hypothesis that inhibition of ERK-H3S10 signaling ameliorates TBI pathogenesis, the mitogen-activated protein kinase–extracellular signal-regulated kinase kinase (MEK) 1/2 inhibitor U0126, which inhibits ERK phosphorylation, was administered into the right lateral ventricle of TBI male and female rats via intracerebroventricular cannulation for 7 days post trauma. U0126 administration indeed prevented H3S10 phosphorylation and improved motor function recovery and cognitive function compared to vehicle treatment. In agreement with our findings in the rat model of TBI, immunoblot and double immunofluorescence analyses of brain tissue specimens from patients with TBI demonstrated high levels and colocalization of p-H3S10 and p-ERK as compared to control specimens from non-injured individuals. In conclusion, our findings indicate that phosphorylation-dependent activation of ERK-H3S10 signaling participates in the pathogenesis of TBI and can be targeted by pharmacological approaches.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Anesthesiology, Xiangya Hospital Central South University, Changsha, China
| | - Xin Yang
- Department of Anesthesiology, Xiangya Hospital Central South University, Changsha, China
| | - Xinran Hou
- Department of Anesthesiology, Xiangya Hospital Central South University, Changsha, China
| | - Wen Zhou
- Department of Anesthesiology, Xiangya Hospital Central South University, Changsha, China
| | - Changlong Bi
- Department of Neurosurgery, Xiangya Hospital Central South University, Changsha, China
| | - Zhuanyi Yang
- Department of Neurosurgery, Xiangya Hospital Central South University, Changsha, China
| | - Sining Lu
- Medical College of Xiangya, Central South University, Changsha, China
| | - Zijin Ding
- Department of Anesthesiology, Xiangya Hospital Central South University, Changsha, China
| | - Zhuofeng Ding
- Department of Anesthesiology, Xiangya Hospital Central South University, Changsha, China
| | - Yu Zou
- Department of Anesthesiology, Xiangya Hospital Central South University, Changsha, China
| | - Qulian Guo
- Department of Anesthesiology, Xiangya Hospital Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, China
| | - Michael K. E. Schäfer
- Department of Anesthesiology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
- Focus Program Translational Neurosciences and Research Center of Immunotherapy of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Changsheng Huang
- Department of Anesthesiology, Xiangya Hospital Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, China
- *Correspondence: Changsheng Huang,
| |
Collapse
|
3
|
Joo H, Bae J, Park JW, Lee BJ, Lee BD, Bu Y. Modified Protocol to Enable the Study of Hemorrhage and Hematoma in a Traumatic Brain Injury Mouse Model. Front Neurol 2021; 12:717513. [PMID: 34650505 PMCID: PMC8505523 DOI: 10.3389/fneur.2021.717513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/27/2021] [Indexed: 11/13/2022] Open
Abstract
To date, many studies using the controlled cortical impact (CCI) mouse model of traumatic brain injury (TBI) have presented results without presenting the pathophysiology of the injury-core itself or the temporal features of hemorrhage (Hrr). This might be owing to the removal of the injury-core during the histological procedure. We therefore developed a modified protocol to preserve the injury-core. The heads of mice were obtained after perfusion and were post-fixed. The brains were then harvested, retaining the ipsilateral skull bone; these were post-fixed again and sliced using a cryocut. To validate the utility of the procedure, the temporal pattern of Hrr depending on the impacting depth was analyzed. CCI-TBI was induced at the following depths: 1.5 mm (mild Hrr), 2.5 mm (moderate Hrr), and 3.5 mm (severe Hrr). A pharmacological study was also conducted using hemodynamic agents such as warfarin (2 mg/kg) and coagulation factor VIIa (Coa-VIIa, 1 mg/kg). The current protocol enabled the visual observation of the Hrr until 7 days. Hrr peaked at 1–3 days and then decreased to the normal range on the seventh day. It expanded from the affected cortex (mild) to the periphery of the hippocampus (moderate) and the brain ventricle (severe). Pharmacological studies showed that warfarin pre-treatment produced a massively increased Hrr, concurrent with the highest mortality rate and brain injury. Coa-VIIa reduced the side effects of warfarin. Therefore, these results suggest that the current method might be suitable to conduct studies on hemorrhage, hematoma, and the injury-core in experiments using the CCI-TBI mouse model.
Collapse
Affiliation(s)
- Hyejin Joo
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, South Korea
| | - Jinhyun Bae
- Department of Herbal Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Jae-Woo Park
- Department of Internal Medicine, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Beom-Joon Lee
- Department of Internal Medicine, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Byoung Dae Lee
- Department of Physiology, Kyung Hee University School of Medicine, Seoul, South Korea
| | - Youngmin Bu
- Department of Herbal Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
4
|
Ondek K, Brevnova O, Jimenez-Ornelas C, Vergara A, Zwienenberg M, Gurkoff G. A new model of repeat mTBI in adolescent rats. Exp Neurol 2020; 331:113360. [PMID: 32442552 DOI: 10.1016/j.expneurol.2020.113360] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 05/02/2020] [Accepted: 05/15/2020] [Indexed: 11/25/2022]
Abstract
Sports-related injury is frequently associated with repeated diffuse and mild traumatic brain injury (mTBI). We combined two existing models for inducing TBI in rats, the Impact Acceleration and Controlled Cortical Impact models, to create a new method relevant to the study of cognitive sequelae of repeat mTBI in adolescent athletes. Repeated mTBI, such as those incurred in sports, can result in a wide range of outcomes, with many individuals experiencing no chronic sequela while others develop profound cognitive and behavioral impairments, typically in the absence of lasting motor symptoms or gross tissue loss appreciable antemortem. It is critical to develop models of mTBI and repeat mTBI that have the flexibility to assess multiple parameters related to injury (e.g. number and magnitude of impacts, inter-injury interval, etc) that are associated with brain vulnerability compared to normal recovery. We designed a 3D-printed plastic implant to permanently secure a metal disc to the skull of adolescent rats in order to induce multiple injuries without performing multiple survival surgeries and also to minimize pre-injury anesthesia time. Rats were randomly assigned to sham injury (n = 12), single injury (n = 12; injury on P41), or repeat injury (n = 14; injuries on P35, P38, and P41) groups. Compared to single injury and sham injury, repeat injuries caused increased toe pinch reflex latency (F(2,34) = 4.126, p < .05) and diminished weight gain (F(2, 34) = 4.767, p < .05). Spatial navigation was tested using Morris water maze, beginning one week after the final injury (P48). While there were no differences between groups during acquisition, both single and repeat injuries resulted in deficits on probe trial performance (p < .01 and p < .05 respectively). Single injury animals also exhibited a deficit in working memory deficit across three days of testing (p < .05). Neither injury group had neuronal loss in the hilus or CA3, according to stereological quantification of NeuN. Therefore, by implanting a helmet we have created a relevant model of sports-related injury and repeated mTBI that results in subtle but significant changes in cognitive outcome in the absence of significant hippocampal cell death.
Collapse
Affiliation(s)
- Katelynn Ondek
- Department of Neurological Surgery, University of California, Davis School of Medicine, 4800 Y St Suite 3740, Sacramento, CA 95817, United States of America; Center for Neuroscience, University of California, Davis, 1544 Newton Ct, Davis, CA 95818, United States of America.
| | - Olga Brevnova
- Department of Neurological Surgery, University of California, Davis School of Medicine, 4800 Y St Suite 3740, Sacramento, CA 95817, United States of America.
| | - Consuelo Jimenez-Ornelas
- Department of Neurological Surgery, University of California, Davis School of Medicine, 4800 Y St Suite 3740, Sacramento, CA 95817, United States of America.
| | - Audrey Vergara
- Department of Neurological Surgery, University of California, Davis School of Medicine, 4800 Y St Suite 3740, Sacramento, CA 95817, United States of America.
| | - Marike Zwienenberg
- Department of Neurological Surgery, University of California, Davis School of Medicine, 4800 Y St Suite 3740, Sacramento, CA 95817, United States of America.
| | - Gene Gurkoff
- Department of Neurological Surgery, University of California, Davis School of Medicine, 4800 Y St Suite 3740, Sacramento, CA 95817, United States of America; Center for Neuroscience, University of California, Davis, 1544 Newton Ct, Davis, CA 95818, United States of America.
| |
Collapse
|
5
|
Abstract
We explored the dynamic features of brain edema after traumatic brain injury (TBI) using healthy adult male Wistar rats. After inducing moderate brain injuries in the rats, we divided them randomly among seven groups on the basis of the time elapsed between TBI and examination: 1, 6, 12, 24, 48, 72, and 168 h. All rats were scanned using diffusion-weighted imaging (DWI) to observe tissue changes in the contusion penumbra (CP) after TBI. Immunoglobulin G expression was also detected. At 1 h after TBI, there was an annular light-colored region in the CP where the intercellular space was enlarged, suggesting vasogenic edema. At 6 h, the cells expanded, their nuclei shrank, and the cytoplasm was replaced by vacuoles, indicating intracellular edema. Vasogenic edema and intracellular edema increased 12 h after TBI, but decreased 24 h after TBI, with vasogenic edema increasing 48 h after TBI. By 72 h after TBI, intracellular edema dominated until resolution of all edema by 168 h after TBI. DWI indicated that the relative apparent diffusion coefficient increased markedly at 1 h after TBI, but was reduced at 6 and 12 h after TBI. At 48 h, relative apparent diffusion coefficient increased gradually and then declined at 72 h. In rats, TBI-related changes include dynamic variations in intracellular and vasogenic edema severity. Routine MRI and DWI examinations do not distinguish between the center of trauma and CP; however, the apparent diffusion coefficient diagram can portray variations in CP edema type and degree at different time-points following TBI.
Collapse
Affiliation(s)
- Huanhuan Ren
- Department of Radiology, Chongqing Seventh People's Hospital, Chongqing, China
| | | |
Collapse
|
6
|
Cavitation-induced traumatic cerebral contusion and intracerebral hemorrhage in the rat brain by using an off-the-shelf clinical shockwave device. Sci Rep 2019; 9:15614. [PMID: 31666607 PMCID: PMC6821893 DOI: 10.1038/s41598-019-52117-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 10/09/2019] [Indexed: 12/20/2022] Open
Abstract
Traumatic cerebral contusion and intracerebral hemorrhages (ICH) commonly result from traumatic brain injury and are associated with high morbidity and mortality rates. Current animal models require craniotomy and provide less control over injury severity. This study proposes a highly reproducible and controllable traumatic contusion and ICH model using non-invasive extracorporeal shockwaves (ESWs). Rat heads were exposed to ESWs generated by an off-the-shelf clinical device plus intravenous injection of microbubbles to enhance the cavitation effect for non-invasive induction of injury. Results indicate that injury severity can be effectively adjusted by using different ESW parameters. Moreover, the location or depth of injury can be purposefully determined by changing the focus of the concave ESW probe. Traumatic contusion and ICH were confirmed by H&E staining. Interestingly, the numbers of TUNEL-positive cells (apoptotic cell death) peaked one day after ESW exposure, while Iba1-positive cells (reactive microglia) and GFAP-positive cells (astrogliosis) respectively peaked seven and fourteen days after exposure. Cytokine assay showed significantly increased expressions of IL-1β, IL-6, and TNF-α. The extent of brain edema was characterized with magnetic resonance imaging. Conclusively, the proposed non-invasive and highly reproducible preclinical model effectively simulates the mechanism of closed head injury and provides focused traumatic contusion and ICH.
Collapse
|
7
|
Improved voiding function by deep brain stimulation in traumatic brain-injured animals with bladder dysfunctions. Int Urol Nephrol 2018; 51:41-52. [PMID: 30474784 DOI: 10.1007/s11255-018-2028-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 11/07/2018] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Traumatic brain injury (TBI) is a global scenario with high mortality and disability, which does not have an effectual and approved therapy till now. Bladder dysfunction is a major symptom after TBI, and this study deals with the alleviation of bladder function in TBI rats, with the aid of deep brain stimulations (DBS). METHODS TBI was induced by weight drop model (WDM) and standardized with the experimental subjects with variable heights for weight dropping. The rats survived after TBI were considered for bladder dysfunction observations. DBS with variable stimulation parameters like cystometric analysis and MRI studies were also performed. RESULTS After experimental studies, TBI 2-m-height crash was determined as suitable parameter due to minimal mortality rate and significant reduction in the voiding efficiency from 67 to 28%, whereas DBS significantly reversed the value of voiding efficiency to 65-84%. MRI studies revealed the severity of TBI impact and DBS localization. CONCLUSION The results showed profound therapeutic effect of PnO-DBS on voiding functions and bladder control on TBI rats.
Collapse
|
8
|
The cause of multiple sclerosis is autoimmune attack of adenosyltransferase thereby limiting adenosylcobalamin production. Med Hypotheses 2017; 109:29-37. [PMID: 29150289 DOI: 10.1016/j.mehy.2017.08.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 06/20/2017] [Accepted: 08/06/2017] [Indexed: 01/17/2023]
Abstract
The pathogenesis of multiple sclerosis (MS) begins with an infection by a bacterium from the class of bacteria that produce and utilize adenosylcobalamin (AdoCbl) and possess an adenosyl transferase enzyme (ATR); these bacteria are the exogenous antigens that cause MS. Human ATR is homologous to bacterial ATR and B cells produce anti-ATR antibodies as an autoimmune response thereby reducing the concentration of ATR and thus limiting production of AdoCbl, one of the two bioactive forms of vitamin B12. The next step in MS pathogenesis is a period of subclinical AdoCbl deficiency over a period of many years resulting in production of odd-carbon-number fatty acids that are incorporated into myelin rendering it antigenic. The next step in MS pathogenesis is breach of the blood brain barrier thereby introducing leukocytes into the brain's blood supply resulting in T cell attack of antigenic myelin. All epidemiological clusters are regions wherein the major agricultural products are legumes that produce a high percentage of odd-carbon-number fatty acids and contain symbiotic rhizobia type bacteria in root nodules and in the soil. This novel etiological hypothesis is called "multiple sclerosis due to adenosylcobalamin deficiency" (MS-AdoCbl). Creation of realistic animal models based on the MS-AdoCbl hypothesis is presented. Methods for testing predictions made by the MS-AdoCbl hypothesis are described.
Collapse
|
9
|
Potential effect of mechano growth factor E-domain peptide on axonal guidance growth in primary cultured cortical neurons of rats. J Tissue Eng Regen Med 2017; 12:70-79. [DOI: 10.1002/term.2364] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 10/10/2016] [Accepted: 11/09/2016] [Indexed: 12/16/2022]
|