1
|
Fabbrizi E, Chernyshov VV, Fiorentino F, Sbardella G, Ragno R, Nawrozkij M, Ivanov R, Rotili D, Mai A. An Amazing 30-Year Journey around the DABO Family: A Medicinal Chemistry Lesson on a Versatile Class of Non-nucleoside HIV-1 Reverse Transcriptase Inhibitors. J Med Chem 2025; 68:5993-6026. [PMID: 40053382 PMCID: PMC11956011 DOI: 10.1021/acs.jmedchem.4c02848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/13/2025] [Accepted: 02/20/2025] [Indexed: 03/28/2025]
Abstract
Since the emergence of AIDS, the non-nucleoside HIV-1 RT inhibitors (NNRTIs) have attracted the attention of scientists and clinicians due to their high potency and specificity combined with low toxicity. 3,4-Dihydro-2-alkoxy-6-benzyl-4-oxopyrimidines (DABOs) are a family of NNRTIs described since 1992, and the best members among S-, NH-, and N,N-DABOs showed high anti-HIV-1 potency in both cellular and enzymatic assays. During 30 years of research, the central 4-(3H)-pyrimidinone nucleus has been decorated with 2,6-dihaloaryl or cyclohexyl groups at the methylene at C6, alkyl- or (arylalkyl/aroylalkyl)thio/amino chains at C2, and hydrogen or a small alkyl group at C5. The further introduction of small (i.e., methoxy) groups at the C6 α-benzylic position furnished potency at the sub-nanomolar level against wild-type HIV-1 and at the nanomolar level against HIV-1 mutant strains. Importantly, some compounds of the DABO family exhibited preventative microbicidal activity, valuable in clinical settings where oral adherence rates are low.
Collapse
Affiliation(s)
- Emanuele Fabbrizi
- Department
of Drug Chemistry and Technologies, Sapienza
University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Vladimir V. Chernyshov
- Sirius University
of Science and Technology, Olympic Avenue, 1, 354340, Federal Territory of Sirius, Krasnodar Region Russian Federation
| | - Francesco Fiorentino
- Department
of Drug Chemistry and Technologies, Sapienza
University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Gianluca Sbardella
- Department
of Pharmacy, University of Salerno, via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - Rino Ragno
- Department
of Drug Chemistry and Technologies, Sapienza
University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Maxim Nawrozkij
- Sirius University
of Science and Technology, Olympic Avenue, 1, 354340, Federal Territory of Sirius, Krasnodar Region Russian Federation
| | - Roman Ivanov
- Sirius University
of Science and Technology, Olympic Avenue, 1, 354340, Federal Territory of Sirius, Krasnodar Region Russian Federation
| | - Dante Rotili
- Department
of Science, Roma Tre University of Rome, Viale Guglielmo Marconi 446, 00146 Rome, Italy
| | - Antonello Mai
- Department
of Drug Chemistry and Technologies, Sapienza
University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
2
|
Boateng AT, Abaidoo-Myles A, Bonney EY, Kyei GB. Isoform selective versus non-selective histone deacetylase inhibitors in HIV latency reversal. AIDS Res Hum Retroviruses 2022; 38:615-621. [PMID: 35778852 PMCID: PMC9419941 DOI: 10.1089/aid.2021.0195] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
HIV remains incurable due to the persistence of a latent viral reservoir found in HIV infected cells, primarily resting memory CD4+ T cells. Depletion of this reservoir may be the only way to end this deadly epidemic. In latency, the integrated proviral DNA of HIV is transcriptionally silenced partly due to the activity of histone deacetylases (HDACs). One strategy proposed to overcome this challenge, is the use of HDAC inhibitors as latency reversal agents to induce viral expression (shock) under the cover of antiretroviral therapy (ART). It is hoped that this will lead to elimination of the reservoir by immunologic and viral cytopathic (kill). However, there are 18 isoforms of HDACs leading to varying selectivity for HDAC inhibitors. Here we review HDAC inhibitors with emphasis on their selectivity for HIV latency reversal.
Collapse
Affiliation(s)
| | - Araba Abaidoo-Myles
- University of Ghana College of Health Sciences, 108322, Accra, Greater Accra, Ghana;
| | - Evelyn Yayra Bonney
- University of Ghana College of Health Sciences, 108322, Accra, Greater Accra, Ghana;
| | - George B Kyei
- University of Ghana College of Health Sciences, 108322, Virology, Off Akilakpa Sawyerr Road, Accra, Ghana;
| |
Collapse
|
3
|
Stadtler H, Shaw G, Neigh GN. Mini-review: Elucidating the psychological, physical, and sex-based interactions between HIV infection and stress. Neurosci Lett 2021; 747:135698. [PMID: 33540057 PMCID: PMC9258904 DOI: 10.1016/j.neulet.2021.135698] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 12/21/2022]
Abstract
Stress is generally classified as any mental or emotional strain resulting from difficult circumstances, and can manifest in the form of depression, anxiety, post-traumatic stress disorder (PTSD), or other neurocognitive disorders. Neurocognitive disorders such as depression, anxiety, and PTSD are large contributors to disability worldwide, and continue to affect individuals and communities. Although these disorders affect men and women, women are disproportionately represented among those diagnosed with affective disorders, a result of both societal gender roles and physical differences. Furthermore, the incidence of these neurocognitive disorders is augmented among People Living with HIV (PLWH); the physical ramifications of stress increase the likelihood of HIV acquisition, pathogenesis, and treatment, as both stress and HIV infection are characterized by chronic inflammation, which creates a more opportunistic environment for HIV. Although the stress response is facilitated by the autonomic nervous system (ANS) and the hypothalamic pituitary adrenal (HPA) axis, when the response involves a psychological component, additional brain regions are engaged. The impact of chronic stress exposure and the origin of individual variation in stress responses and resilience are at least in part attributable to regions outside the primary stress circuity, including the amygdala, prefrontal cortex, and hippocampus. This review aims to elucidate the relationship between stress and HIV, how these interact with sex, and to understand the physical ramifications of these interactions.
Collapse
Affiliation(s)
- Hannah Stadtler
- Department of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Gladys Shaw
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, USA
| | - Gretchen N Neigh
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
4
|
HIV latency reversal agents: A potential path for functional cure? Eur J Med Chem 2021; 213:113213. [PMID: 33540228 DOI: 10.1016/j.ejmech.2021.113213] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 11/16/2020] [Accepted: 01/12/2021] [Indexed: 12/28/2022]
Abstract
Despite the advances in Human Immunodeficiency Virus (HIV) treatment, the cure for all HIV patients still poses a major challenge, which needs to be surpassed in the coming years. Among the strategies pursuing this aim, the 'kick-and-kill' approach, which involves the reactivation and elimination of a latent HIV reservoir that resides in some CD4+ T cells, appears promising. The first step of this approach requires the use of latency reversal agents (LRAs) that induce the reactivation of the latent virus. Although several classes of LRAs have been reported so far, some limitations of these compounds still need to be overcome before their clinical use. The complete exhaustion of the reservoir of latent virus will contribute to promote the second step of this approach, facilitating the elimination of the reactivated HIV. Therefore, potent, safe, and non-toxic LRAs are necessary to promote efficient elimination of the HIV-1 virus from its reservoir. In this review article, we focus on the promising LRAs that have been described in the literature over the past few years, highlighting the advantages and disadvantages of their use in the 'kick and kill' approach, thus opening a new avenue in the development of a potential cure.
Collapse
|
5
|
Chu Z, Tong R, Yang Y, Song X, Hu TB, Fan Y, Zhao C, Gao L, Song Z. Diverse synthesis of the C ring fragment of bryostatins via Zn/Cu-promoted conjugate addition of α-hydroxy iodide with enone. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.11.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Roux A, Bismuth G, Mangeney M. [FOXO1 transcription factor: a key player in T cell/HIV-1 interaction]. Med Sci (Paris) 2020; 36:24-26. [PMID: 32014093 DOI: 10.1051/medsci/2019256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Arthur Roux
- Institut Cochin, CNRS UMR8104, Inserm U1016, université Paris Descartes, 22 rue Méchain, 75014 Paris, France
| | - Georges Bismuth
- Institut Cochin, CNRS UMR8104, Inserm U1016, université Paris Descartes, 22 rue Méchain, 75014 Paris, France
| | - Marianne Mangeney
- Institut Cochin, CNRS UMR8104, Inserm U1016, université Paris Descartes, 22 rue Méchain, 75014 Paris, France
| |
Collapse
|
7
|
Kruize Z, Kootstra NA. The Role of Macrophages in HIV-1 Persistence and Pathogenesis. Front Microbiol 2019; 10:2828. [PMID: 31866988 PMCID: PMC6906147 DOI: 10.3389/fmicb.2019.02828] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 11/21/2019] [Indexed: 12/12/2022] Open
Abstract
Current antiretroviral therapy (ART) effectively suppresses Human Immunodeficiency Virus type 1 (HIV-1) in infected individuals. However, even long term ART does not eradicate HIV-1 infected cells and the virus persists in cellular reservoirs. Beside memory CD4+ T cells, cells of the myeloid lineage, especially macrophages, are believed to be an important sanctuary for HIV-1. Monocytes and macrophages are key players in the innate immune response to pathogens and are recruited to sites of infection and inflammation. Due to their long life span and ability to reside in virtually every tissue, macrophages have been proposed to play a critical role in the establishment and persistence of the HIV-1 reservoir. Current HIV-1 cure strategies mainly focus on the concept of “shock and kill” to purge the viral reservoir. This approach aims to reactivate viral protein production in latently infected cells, which subsequently are eliminated as a consequence of viral replication, or recognized and killed by the immune system. Macrophage susceptibility to HIV-1 infection is dependent on the local microenvironment, suggesting that molecular pathways directing differentiation and polarization are involved. Current latency reversing agents (LRA) are mainly designed to reactivate the HIV-1 provirus in CD4+ T cells, while their ability to abolish viral latency in macrophages is largely unknown. Moreover, the resistance of macrophages to HIV-1 mediated kill and the presence of infected macrophages in immune privileged regions including the central nervous system (CNS), may pose a barrier to elimination of infected cells by current “shock and kill” strategies. This review focusses on the role of monocytes/macrophages in HIV-1 persistence. We will discuss mechanisms of viral latency and persistence in monocytes/macrophages. Furthermore, the role of these cells in HIV-1 tissue distribution and pathogenesis will be discussed.
Collapse
Affiliation(s)
- Zita Kruize
- Laboratory for Viral Immune Pathogenesis, Department of Experimental Immunology, Amsterdam UMC, Amsterdam Infection & Immunity Institute, University of Amsterdam, Amsterdam, Netherlands
| | - Neeltje A Kootstra
- Laboratory for Viral Immune Pathogenesis, Department of Experimental Immunology, Amsterdam UMC, Amsterdam Infection & Immunity Institute, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|