1
|
Singha SK, Muhammad I, Ibrahim MA, Wang M, Ashpole NM, Shariat-Madar Z. 4- O-Methylhonokiol Influences Normal Cardiovascular Development in Medaka Embryo. Molecules 2019; 24:molecules24030475. [PMID: 30699965 PMCID: PMC6384692 DOI: 10.3390/molecules24030475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/24/2019] [Accepted: 01/27/2019] [Indexed: 11/21/2022] Open
Abstract
Although 4-O-Methylhonokiol (MH) effects on neuronal and immune cells have been established, it is still unclear whether MH can cause a change in the structure and function of the cardiovascular system. The overarching goal of this study was to evaluate the effects of MH, isolated from Magnolia grandiflora, on the development of the heart and vasculature in a Japanese medaka model in vivo to predict human health risks. We analyzed the toxicity of MH in different life-stages of medaka embryos. MH uptake into medaka embryos was quantified. The LC50 of two different exposure windows (stages 9–36 (0–6 days post fertilization (dpf)) and 25–36 (2–6 dpf)) were 5.3 ± 0.1 μM and 9.9 ± 0.2 μM. Survival, deformities, days to hatch, and larval locomotor response were quantified. Wnt 1 was overexpressed in MH-treated embryos indicating deregulation of the Wnt signaling pathway, which was associated with spinal and cardiac ventricle deformities. Overexpression of major proinflammatory mediators and biomarkers of the heart were detected. Our results indicated that the differential sensitivity of MH in the embryos was developmental stage-specific. Furthermore, this study demonstrated that certain molecules can serve as promising markers at the transcriptional and phenotypical levels, responding to absorption of MH in the developing embryo.
Collapse
Affiliation(s)
- Santu K Singha
- Department of Biomolecular Sciences, Division of Pharmacology, University of Mississippi, University, MS 38677, USA.
| | - Ilias Muhammad
- The National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, University of Mississippi, University, MS 38677, USA.
| | - Mohamed Ali Ibrahim
- The National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, University of Mississippi, University, MS 38677, USA.
- Chemistry of Natural Compounds Department, National Research Centre, Dokki-Giza 12622, Egypt.
| | - Mei Wang
- The National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, University of Mississippi, University, MS 38677, USA.
| | - Nicole M Ashpole
- Department of Biomolecular Sciences, Division of Pharmacology, University of Mississippi, University, MS 38677, USA.
- The National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, University of Mississippi, University, MS 38677, USA.
| | - Zia Shariat-Madar
- Department of Biomolecular Sciences, Division of Pharmacology, University of Mississippi, University, MS 38677, USA.
- The National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, University of Mississippi, University, MS 38677, USA.
- Light Microscopy Core, University of Mississippi, University, MS 38677, USA.
| |
Collapse
|
2
|
Feng L, Yue XF, Chen YX, Liu XM, Wang LS, Cao FR, Wang Q, Liao YH, Pan RL, Chang Q. LC/MS-based metabolomics strategy to assess the amelioration effects of ginseng total saponins on memory deficiency induced by simulated microgravity. J Pharm Biomed Anal 2016; 125:329-38. [DOI: 10.1016/j.jpba.2016.04.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 03/30/2016] [Accepted: 04/01/2016] [Indexed: 01/24/2023]
|
3
|
Yu HE, Oh SJ, Ryu JK, Kang JS, Hong JT, Jung JK, Han SB, Seo SY, Kim YH, Park SK, Kim HM, Lee K. Pharmacokinetics and metabolism of 4-O-methylhonokiol in rats. Phytother Res 2013; 28:568-78. [PMID: 23824979 DOI: 10.1002/ptr.5033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Revised: 05/11/2013] [Accepted: 06/03/2013] [Indexed: 01/09/2023]
Abstract
The purpose of this study was to characterize the pharmacokinetics and metabolism of 4-O-methylhonokiol in rats. The absorption and disposition of 4-O-methylhonokiol were investigated in male Sprague-Dawley rats following a single intravenous (2 mg/kg) or oral (10 mg/kg) dose. Its metabolism was studied in vitro using rat liver microsomes and cytosol. 4-O-Methylhonokiol exhibited a high systemic plasma clearance and a large volume of distribution. The oral dose gave a peak plasma concentration of 24.1±3.3 ng/mL at 2.9±1.9 h and a low estimated bioavailability. 4-O-Methylhonokiol was rapidly metabolized and converted at least in part to honokiol in a concentration-dependent manner by cytochrome P450 in rat liver microsomes, predicting a high systemic clearance consistent with the pharmacokinetic results. It was also shown to be metabolized by glucuronidation and sulfation in rat liver microsomes and cytosol, respectively. 4-O-Methylhonokiol showed a moderate permeability with no apparent vectorial transport across Caco-2 cells, suggesting that intestinal permeation process is not likely to limit its oral absorption. Taken together, these results suggest that the rapid hepatic metabolism of 4-O-methylhonokiol could be the major reason for its high systemic clearance and low oral bioavailability.
Collapse
Affiliation(s)
- Hyung Eun Yu
- Bio-Evaluation Center, KRIBB, Chungbuk, Republic of Korea; College of Pharmacy, Chungbuk National University, Chungbuk, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|