1
|
Ippolito M, Hayduk SA, Kinney W, Brenneman DE, Ward SJ. KLS-13019, a Novel Structural Analogue of Cannabidiol and GPR55 Receptor Antagonist, Prevents and Reverses Chemotherapy-Induced Peripheral Neuropathy in Rats. J Pharmacol Exp Ther 2024; 391:231-240. [PMID: 39134424 PMCID: PMC11493436 DOI: 10.1124/jpet.124.002190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/20/2024] [Accepted: 08/05/2024] [Indexed: 08/24/2024] Open
Abstract
Neuropathic pain is a form of chronic pain that develops because of damage to the nervous system. Treatment of neuropathic pain is often incompletely effective, and most available therapeutics have only moderate efficacy and present side effects that limit their use. Opioids are commonly prescribed for the management of neuropathic pain despite equivocal results in clinical studies and significant abuse potential. Thus, neuropathic pain represents an area of critical unmet medical need, and novel classes of therapeutics with improved efficacy and safety profiles are urgently needed. The cannabidiol structural analog and novel antagonist of GPR55, KLS-13019, was screened in rat models of neuropathic pain. Tactile sensitivity associated with chemotherapy exposure was induced in rats with once-daily 1-mg/kg paclitaxel injections for 4 days or 5 mg/kg oxaliplatin every third day for 1 week. Rats were then administered KLS-13019 or comparator drugs on day 7 in an acute dosing paradigm or days 7-10 in a chronic dosing paradigm, and mechanical or cold allodynia was assessed. Allodynia was reversed in a dose-dependent manner in the rats treated with KLS-13019, with the highest dose reverting the response to prepaclitaxel injection baseline levels with both intraperitoneal and oral administration after acute dosing. In the chronic dosing paradigm, four consecutive doses of KLS-13019 completely reversed allodynia for the duration of the phenotype in control animals. Additionally, coadministration of KLS-13019 with paclitaxel prevented the allodynic phenotype from developing. Together, these data suggest that KLS-13019 represents a potential new drug for the treatment of neuropathic pain. SIGNIFICANCE STATEMENT: Chemotherapy-induced peripheral neuropathy (CIPN) is a common, debilitating side effect of cancer treatment with no known cure. The GPR55 antagonist KLS-13019 represents a novel class of drug for this condition that is a potent, durable inhibitor of allodynia associated with CIPN in rats in both prevention and reversal-dosing paradigms. This novel therapeutic approach addresses a critical area of unmet medical need.
Collapse
Affiliation(s)
- Michael Ippolito
- Department of Neural Sciences, Center for Substance Abuse Research, Temple University, Philadelphia, Pennsylvania (M.I., S.A.H., S.J.W.) and Pennsylvania Biotechnology Center, Kannalife Sciences Inc, Doylestown Pennsylvania (W.K., D.E.B.)
| | - Sean A Hayduk
- Department of Neural Sciences, Center for Substance Abuse Research, Temple University, Philadelphia, Pennsylvania (M.I., S.A.H., S.J.W.) and Pennsylvania Biotechnology Center, Kannalife Sciences Inc, Doylestown Pennsylvania (W.K., D.E.B.)
| | - William Kinney
- Department of Neural Sciences, Center for Substance Abuse Research, Temple University, Philadelphia, Pennsylvania (M.I., S.A.H., S.J.W.) and Pennsylvania Biotechnology Center, Kannalife Sciences Inc, Doylestown Pennsylvania (W.K., D.E.B.)
| | - Douglas E Brenneman
- Department of Neural Sciences, Center for Substance Abuse Research, Temple University, Philadelphia, Pennsylvania (M.I., S.A.H., S.J.W.) and Pennsylvania Biotechnology Center, Kannalife Sciences Inc, Doylestown Pennsylvania (W.K., D.E.B.)
| | - Sara Jane Ward
- Department of Neural Sciences, Center for Substance Abuse Research, Temple University, Philadelphia, Pennsylvania (M.I., S.A.H., S.J.W.) and Pennsylvania Biotechnology Center, Kannalife Sciences Inc, Doylestown Pennsylvania (W.K., D.E.B.)
| |
Collapse
|
2
|
Characterization of Patients With and Without Painful Peripheral Neuropathy After Receiving Neurotoxic Chemotherapy: Traditional Quantitative Sensory Testing vs C-Fiber and Aδ-Fiber Selective Diode Laser Stimulation. THE JOURNAL OF PAIN 2022; 23:796-809. [PMID: 34896646 PMCID: PMC9086082 DOI: 10.1016/j.jpain.2021.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 11/09/2021] [Accepted: 11/12/2021] [Indexed: 11/21/2022]
Abstract
Painful chemotherapy induced peripheral neuropathy (CIPN) is a common complication of chemotherapy with drugs such as taxanes and platinum compounds. Currently, no methods are available for early detection of sensory changes that are associated with painful CIPN, nor are there biomarkers that are specific to painful CIPN. This study aimed to compare Diode Laser fiber type-selective stimulator (DLss), a method to selectively stimulate cutaneous C and Aδ fibers, to traditional quantitative sensory testing (QST) in determining psychophysical differences between patients with painful CIPN and a control group. Sensory testing was performed on the dorsal mid-foot of 20 patients with painful neuropathy after taxane- or platinum-based chemotherapy, and 20 patients who received similar neurotoxic chemotherapy, without painful CIPN. In a multivariable analysis, C-fiber to Aδ fiber detection threshold ratio, measured by DLss, was significantly different between the groups (P <.05). While QST parameters such as warmth detection threshold were different between the groups in univariate analyses, these findings were likely attributable to group differences in patient age and cumulative chemotherapy dose. PERSPECTIVE: In this study, fiber-specific DLss test showed potential in identifying sensory changes that are specific for painful neuropathy, encouraging future testing of this approach as a biomarker for early detection of painful CIPN. TRIAL REGISTRATION: The study was approved by the Washington University Institutional Review Board (#201807162) and registered at ClinicalTrials.gov (NCT03687970).
Collapse
|
3
|
Warncke UO, Toma W, Meade JA, Park AJ, Thompson DC, Caillaud M, Bigbee JW, Bryant CD, Damaj MI. Impact of Dose, Sex, and Strain on Oxaliplatin-Induced Peripheral Neuropathy in Mice. FRONTIERS IN PAIN RESEARCH 2021; 2:683168. [PMID: 35295533 PMCID: PMC8915759 DOI: 10.3389/fpain.2021.683168] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 05/11/2021] [Indexed: 12/18/2022] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a common, dose limiting, and long-lasting side effect of chemotherapy treatment. Unfortunately, no treatment has proven efficacious for this side effect. Rodent models play a crucial role in the discovery of new mechanisms underlying the initiation, progression, and recovery of CIPN and the potential discovery of new therapeutics. However, there is limited consistency in the dose, the sex, age, and genetic background of the animal used in these studies and the outcome measures used in evaluation of CIPN rely primarily on noxious and reflexive measures. The main objective of this study was to provide a comprehensive and systematic characterization of oxaliplatin-induced peripheral neuropathy in mice by using a battery of behavioral, sensory, electrophysiological, and morphometric measures in both sexes of the two widely used strains of mice, C57BL/6J and BALB/cJ. Mice received intraperitoneal injections of 3 or 30 mg/kg cumulative doses of oxaliplatin over the course of 2 weeks. Both doses induced long-term and time-dependent mechanical and cold hypersensitivity. Our results show that 30 mg/kg oxaliplatin reduced the locomotor activity in C57BL/6J mice, and C57BL/6J females showed anxiety-like behavior one-week post completion of treatment. In the same dose group, BALB/cJ males and females sustained a larger decrease in sucrose preference than either male or female C57BL/6J mice. Both strains failed to show significant changes in burrowing and nesting behaviors. Two clinically relevant assessments of changes to the peripheral nerve fibers, nerve conduction and intraepidermal nerve fiber density (IENFD) were evaluated. Only BALB/cJ females showed significant reduction in the nerve conduction amplitude 1 week after 30 mg/kg oxaliplatin regimen. Moreover, this dose of the chemo agent reduced the IENF density in both sexes and strains. Our findings suggest that mouse strain, sex, and assay type should be carefully considered when assessing the effects of oxaliplatin and potential therapeutic interventions.
Collapse
Affiliation(s)
- Urszula O Warncke
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, United States
- Wright Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, VA, United States
| | - Wisam Toma
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, United States
| | - Julie A Meade
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, United States
| | - Abigail J Park
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, United States
| | - Danielle C Thompson
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, United States
| | - Martial Caillaud
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, United States
| | - John W Bigbee
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Camron D Bryant
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, Boston, MA, United States
| | - M Imad Damaj
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
4
|
Simsek NY, Demir A. Reliability and Validity of the Turkish Version of Chemotherapy-induced Peripheral Neuropathy Assessment Tool for Breast Cancer Patients Receiving Taxane Chemotherapy. Asia Pac J Oncol Nurs 2018; 5:435-441. [PMID: 30271828 PMCID: PMC6103197 DOI: 10.4103/apjon.apjon_29_18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Objective: The aim was to evaluate the reliability and the validity of the Turkish version of the chemotherapy-induced peripheral neuropathy assessment tool (CIPNAT) in cancer patients using taxane. Methods: This methodological study was carried out to evaluate the validity and the reliability of the CIPNAT. The sample cohort comprised 430 breast cancer patients who were administered taxane, a chemotherapeutic agent, between April and December 2017. Data were collected by the CIPNAT and by a demographic data form. The CIPNAT content reliability was checked after completing it in Turkish. Validity was tested after the translation as well. Cronbach's alpha and test–retest reliability were utilized for reliability analyses. Results: Cronbach's alpha value was 0.87 in this study. The test–retest reliability ranged between 0.90 and 0.96 for all items. No difference existed between the means of test and retest scores of the CIPNAT. A statistically significant positive relationship materialized between the item's test and retest scores. There were statistically significant positive relationships among all levels of the CIPNAT. Factor analysis resulted in a size value higher than 1 and explained 66% of total variation. These results show that the Turkish version of the CIPNAT is a valid and reliable scale in Turkish society. Conclusions: This study showed that the CIPNAT in Turkey is a reliable and valid tool to evaluate taxane chemotherapy in breast cancer patients.
Collapse
Affiliation(s)
| | - Ayten Demir
- Department of Nursing, Faculty of Health Sciences, Ankara University, Ankara, Turkey
| |
Collapse
|