1
|
Yanagihara T, Hata K, Matsubara K, Kunimura K, Suzuki K, Tsubouchi K, Ikegame S, Baba Y, Fukui Y, Okamoto I. Exploratory mass cytometry analysis reveals immunophenotypes of cancer treatment-related pneumonitis. eLife 2024; 12:RP87288. [PMID: 38607373 PMCID: PMC11014725 DOI: 10.7554/elife.87288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024] Open
Abstract
Anticancer treatments can result in various adverse effects, including infections due to immune suppression/dysregulation and drug-induced toxicity in the lung. One of the major opportunistic infections is Pneumocystis jirovecii pneumonia (PCP), which can cause severe respiratory complications and high mortality rates. Cytotoxic drugs and immune-checkpoint inhibitors (ICIs) can induce interstitial lung diseases (ILDs). Nonetheless, the differentiation of these diseases can be difficult, and the pathogenic mechanisms of such diseases are not yet fully understood. To better comprehend the immunophenotypes, we conducted an exploratory mass cytometry analysis of immune cell subsets in bronchoalveolar lavage fluid from patients with PCP, cytotoxic drug-induced ILD (DI-ILD), and ICI-associated ILD (ICI-ILD) using two panels containing 64 markers. In PCP, we observed an expansion of the CD16+ T cell population, with the highest CD16+ T proportion in a fatal case. In ICI-ILD, we found an increase in CD57+ CD8+ T cells expressing immune checkpoints (TIGIT+ LAG3+ TIM-3+ PD-1+), FCRL5+ B cells, and CCR2+ CCR5+ CD14+ monocytes. These findings uncover the diverse immunophenotypes and possible pathomechanisms of cancer treatment-related pneumonitis.
Collapse
Affiliation(s)
- Toyoshi Yanagihara
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu UniversityFukuokaJapan
- Department of Respiratory Medicine, NHO Fukuoka National HospitalFukuokaJapan
| | - Kentaro Hata
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu UniversityFukuokaJapan
| | - Keisuke Matsubara
- Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu UniversityFukuokaJapan
| | - Kazufumi Kunimura
- Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu UniversityFukuokaJapan
| | - Kunihiro Suzuki
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu UniversityFukuokaJapan
| | - Kazuya Tsubouchi
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu UniversityFukuokaJapan
| | - Satoshi Ikegame
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu UniversityFukuokaJapan
| | - Yoshihiro Baba
- Division of Immunology and Genome Biology, Department of Molecular Genetics, Medical Institute of Bioregulation, Kyushu UniversityFukuokaJapan
| | - Yoshinori Fukui
- Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu UniversityFukuokaJapan
| | - Isamu Okamoto
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu UniversityFukuokaJapan
| |
Collapse
|
2
|
Stenson EK, Kendrick J, Dixon B, Thurman JM. The complement system in pediatric acute kidney injury. Pediatr Nephrol 2022; 38:1411-1425. [PMID: 36203104 PMCID: PMC9540254 DOI: 10.1007/s00467-022-05755-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 08/08/2022] [Accepted: 09/09/2022] [Indexed: 10/24/2022]
Abstract
The complement cascade is an important part of the innate immune system. In addition to helping the body to eliminate pathogens, however, complement activation also contributes to the pathogenesis of a wide range of kidney diseases. Recent work has revealed that uncontrolled complement activation is the key driver of several rare kidney diseases in children, including atypical hemolytic uremic syndrome and C3 glomerulopathy. In addition, a growing body of literature has implicated complement in the pathogenesis of more common kidney diseases, including acute kidney injury (AKI). Complement-targeted therapeutics are in use for a variety of diseases, and an increasing number of therapeutic agents are under development. With the implication of complement in the pathogenesis of AKI, complement-targeted therapeutics could be trialed to prevent or treat this condition. In this review, we discuss the evidence that the complement system is activated in pediatric patients with AKI, and we review the role of complement proteins as biomarkers and therapeutic targets in patients with AKI.
Collapse
Affiliation(s)
- Erin K. Stenson
- grid.430503.10000 0001 0703 675XSection of Pediatric Critical Care Medicine, Department of Pediatrics, University of Colorado School of Medicine, 13121 E 17th Avenue, MS8414, Aurora, CO 80045 USA
| | - Jessica Kendrick
- grid.430503.10000 0001 0703 675XDivision of Renal Disease and Hypertension, Department of Medicine, University of Colorado School of Medicine, Aurora, CO USA
| | - Bradley Dixon
- grid.430503.10000 0001 0703 675XRenal Section, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO USA
| | - Joshua M. Thurman
- grid.430503.10000 0001 0703 675XDivision of Renal Disease and Hypertension, Department of Medicine, University of Colorado School of Medicine, Aurora, CO USA
| |
Collapse
|
4
|
MacDonald L, Alivernini S, Tolusso B, Elmesmari A, Somma D, Perniola S, Paglionico A, Petricca L, Bosello SL, Carfì A, Sali M, Stigliano E, Cingolani A, Murri R, Arena V, Fantoni M, Antonelli M, Landi F, Franceschi F, Sanguinetti M, McInnes IB, McSharry C, Gasbarrini A, Otto TD, Kurowska-Stolarska M, Gremese E. COVID-19 and RA share an SPP1 myeloid pathway that drives PD-L1+ neutrophils and CD14+ monocytes. JCI Insight 2021; 6:147413. [PMID: 34143756 PMCID: PMC8328085 DOI: 10.1172/jci.insight.147413] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 06/02/2021] [Indexed: 12/15/2022] Open
Abstract
We explored the potential link between chronic inflammatory arthritis and COVID-19 pathogenic and resolving macrophage pathways and their role in COVID-19 pathogenesis. We found that bronchoalveolar lavage fluid (BALF) macrophage clusters FCN1+ and FCN1+SPP1+ predominant in severe COVID-19 were transcriptionally related to synovial tissue macrophage (STM) clusters CD48hiS100A12+ and CD48+SPP1+ that drive rheumatoid arthritis (RA) synovitis. BALF macrophage cluster FABP4+ predominant in healthy lung was transcriptionally related to STM cluster TREM2+ that governs resolution of synovitis in RA remission. Plasma concentrations of SPP1 and S100A12 (key products of macrophage clusters shared with active RA) were high in severe COVID-19 and predicted the need for Intensive Care Unit transfer, and they remained high in the post-COVID-19 stage. High plasma levels of SPP1 were unique to severe COVID-19 when compared with other causes of severe pneumonia, and IHC localized SPP1+ macrophages in the alveoli of COVID-19 lung. Investigation into SPP1 mechanisms of action revealed that it drives proinflammatory activation of CD14+ monocytes and development of PD-L1+ neutrophils, both hallmarks of severe COVID-19. In summary, COVID-19 pneumonitis appears driven by similar pathogenic myeloid cell pathways as those in RA, and their mediators such as SPP1 might be an upstream activator of the aberrant innate response in severe COVID-19 and predictive of disease trajectory including post-COVID-19 pathology.
Collapse
Affiliation(s)
- Lucy MacDonald
- Research into Inflammatory Arthritis Centre Versus Arthritis (RACE), University of Glasgow, United Kingdom
| | - Stefano Alivernini
- Research into Inflammatory Arthritis Centre Versus Arthritis (RACE), University of Glasgow, United Kingdom
- Division of Rheumatology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Division of Rheumatology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Barbara Tolusso
- Research into Inflammatory Arthritis Centre Versus Arthritis (RACE), University of Glasgow, United Kingdom
- Division of Rheumatology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Aziza Elmesmari
- Research into Inflammatory Arthritis Centre Versus Arthritis (RACE), University of Glasgow, United Kingdom
| | - Domenico Somma
- Research into Inflammatory Arthritis Centre Versus Arthritis (RACE), University of Glasgow, United Kingdom
| | - Simone Perniola
- Division of Rheumatology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Annamaria Paglionico
- Division of Rheumatology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Luca Petricca
- Division of Rheumatology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Silvia L. Bosello
- Division of Rheumatology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Angelo Carfì
- Institute of Internal Medicine and Geriatrics and
| | - Michela Sali
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie – Sezione di Microbiologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Egidio Stigliano
- Department of Woman and Child Health and Public Health, Area of Pathology, and U.O.S.D. Coordinamento attività di Settorato, and
| | - Antonella Cingolani
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Dipartimento di Sicurezza e Bioetica, Sez. Malattie Infettive, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Rita Murri
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Dipartimento di Sicurezza e Bioetica, Sez. Malattie Infettive, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Vincenzo Arena
- Department of Woman and Child Health and Public Health, Area of Pathology, and U.O.S.D. Coordinamento attività di Settorato, and
| | - Massimo Fantoni
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Dipartimento di Sicurezza e Bioetica, Sez. Malattie Infettive, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Massimo Antonelli
- Emergency Medicine, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Emergency Medicine, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | - Francesco Franceschi
- Dipartimento di Scienze dell’Emergenza, Anestesiologiche e della Rianimazione, Fondazione, Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Dipartimento di Scienze dell’Emergenza, Anestesiologiche e della Rianimazione, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Maurizio Sanguinetti
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie – Sezione di Microbiologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Iain B. McInnes
- Research into Inflammatory Arthritis Centre Versus Arthritis (RACE), University of Glasgow, United Kingdom
| | - Charles McSharry
- Institute of Infection, Immunity and Inflammation, University of Glasgow, United Kingdom
| | - Antonio Gasbarrini
- Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Thomas D. Otto
- Research into Inflammatory Arthritis Centre Versus Arthritis (RACE), University of Glasgow, United Kingdom
| | - Mariola Kurowska-Stolarska
- Research into Inflammatory Arthritis Centre Versus Arthritis (RACE), University of Glasgow, United Kingdom
| | - Elisa Gremese
- Research into Inflammatory Arthritis Centre Versus Arthritis (RACE), University of Glasgow, United Kingdom
- Division of Rheumatology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Division of Rheumatology, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
5
|
Jordan SC. Innate and adaptive immune responses to SARS-CoV-2 in humans: relevance to acquired immunity and vaccine responses. Clin Exp Immunol 2021; 204:310-320. [PMID: 33534923 PMCID: PMC8013613 DOI: 10.1111/cei.13582] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/02/2021] [Accepted: 01/18/2021] [Indexed: 12/13/2022] Open
Abstract
The factors responsible for the spectrum of coronavirus 19 (COVID-19) disease severity and the genesis and nature of protective immunity against COVID-19 remain elusive. Multiple studies have investigated the immune responses to COVID-19 in various populations, including those without evidence of COVID-19 infection. Information regarding innate and adaptive immune responses to the novel severe respiratory syndrome coronavirus 2 (SARS-CoV-2) has evolved rapidly. Data are accumulating defining disease phenotypes that aid in rational and informed development of new therapeutic approaches for the treatment of patients infected with SARS-CoV-2 and the development of novel vaccines. In this paper, data on important innate immune responses are summarized, including cytokines, specifically interleukin (IL)-6 and complement, and potential treatments are explored. Adaptive immune responses and derivative therapeutics such as monoclonal antibodies directed at spike proteins are also examined. Finally, data on real-time assessments of adaptive immune responses are explored, which include CD4+ /CD8+ T cells, natural killer (NK) T cells, memory B cells and T follicular cells with specificities for COVID-19 peptides in infected and normal individuals. Data of two novel vaccines have been released, both showing > 95% efficacy in preventing SARS-CoV-2 infection. Analysis of humoral and cellular responses to the vaccines will determine the robustness and durability of protection. In addition, long-term assessment of SARS-CoV-2 memory B and T cell-mediated immune responses in patients recovering from an infection or those with cross-reactive immunological memory will help to define risk for future SARS-CoV infections. Finally, patients recovering from SARS-CoV-2 infection may experience prolonged immune activation probably due to T cell exhaustion. This will be an important new frontier for study.
Collapse
Affiliation(s)
- S. C. Jordan
- Comprehensive Transplant CenterCedars‐Sinai Medical CenterLos AngelesCAUSA
| |
Collapse
|
6
|
Adesanya TMA, Campbell CM, Cheng L, Ogbogu PU, Kahwash R. C1 Esterase Inhibition: Targeting Multiple Systems in COVID-19. J Clin Immunol 2021; 41:729-732. [PMID: 33474624 PMCID: PMC7817248 DOI: 10.1007/s10875-021-00972-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 01/13/2021] [Indexed: 12/20/2022]
Affiliation(s)
- T M Ayodele Adesanya
- Department of Family and Community Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| | - Courtney M Campbell
- Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Lijun Cheng
- Department of Biomedical Informatics, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Princess U Ogbogu
- Division of Pediatric Allergy, Immunology, and Rheumatology, Department of Pediatrics, University Hospitals Rainbow Babies and Children's Hospital, Cleveland, OH, USA
| | - Rami Kahwash
- Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|